Symmetric and asymmetric coalescence of droplets on a solid surface in the inertia-dominated regime
We present an investigation of symmetric and asymmetric coalescence of two droplets of equal and unequal size on a solid surface in the inertia-dominated regime. Asymmetric coalescence can result due to the coalescence of two unequal-sized droplets or coalescence of two droplets having different con...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2019-09, Vol.31 (9) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present an investigation of symmetric and asymmetric coalescence of two droplets of equal and unequal size on a solid surface in the inertia-dominated regime. Asymmetric coalescence can result due to the coalescence of two unequal-sized droplets or coalescence of two droplets having different contact angles with the surface due to a step gradient in wettability. Based on the solution of an analytical model and lattice Boltzmann simulations, we analyze symmetric and asymmetric coalescence of two droplets on a solid surface. The analysis of coalescence of identical droplets show that the liquid bridge height grows with time as (t*)1/2 for θ = 90° and (t*)2/3 for θ < 90°, where t* is dimensionless time. Our analysis also yields the same scaling law for the coalescence of two unequal-sized droplets on a surface with homogeneous wettability. We also discuss the coalescence of two droplets having different contact angles with the surface due to a step gradient in wettability. We show that the prediction of bridge height with time scales as (t*)2/3 irrespective of contact angles of droplet with the surface. |
---|---|
ISSN: | 1070-6631 1089-7666 |
DOI: | 10.1063/1.5119014 |