Rational Krylov methods for functions of matrices with applications to fractional partial differential equations

In this paper we propose a new choice of poles to define reliable rational Krylov methods. These methods are used for approximating function of positive definite matrices. In particular, the fractional power and the fractional resolvent are considered because of their importance in the numerical sol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2019-11, Vol.396, p.470-482
Hauptverfasser: Aceto, L., Bertaccini, D., Durastante, F., Novati, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we propose a new choice of poles to define reliable rational Krylov methods. These methods are used for approximating function of positive definite matrices. In particular, the fractional power and the fractional resolvent are considered because of their importance in the numerical solution of fractional partial differential equations. The numerical experiments on some fractional partial differential equation models confirm that the proposed approach is promising.
ISSN:0021-9991
1090-2716
DOI:10.1016/j.jcp.2019.07.009