Optimization of the Belief-Propagation Algorithm for Distributed Detection by Linear Data-Fusion Techniques

In this paper, we investigate distributed inference schemes, over binary-valued Markov random fields, which are realized by the belief propagation (BP) algorithm. We first show that a decision variable obtained by the BP algorithm in a network of distributed agents can be approximated by a linear fu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-09
Hauptverfasser: Younes Abdi, Ristaniemi, Tapani
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we investigate distributed inference schemes, over binary-valued Markov random fields, which are realized by the belief propagation (BP) algorithm. We first show that a decision variable obtained by the BP algorithm in a network of distributed agents can be approximated by a linear fusion of all the local log-likelihood ratios. The proposed approach clarifies how the BP algorithm works, simplifies the statistical analysis of its behavior, and enables us to develop a performance optimization framework for the BP-based distributed inference systems. Next, we propose a blind learning-adaptation scheme to optimize the system performance when there is no information available a priori describing the statistical behavior of the wireless environment concerned. In addition, we propose a blind threshold adaptation method to guarantee a certain performance level in a BP-based distributed detection system. To clarify the points discussed, we design a novel linear-BP-based distributed spectrum sensing scheme for cognitive radio networks and illustrate the performance improvement obtained, over an existing BP-based detection method, via computer simulations.
ISSN:2331-8422