Mixed in-situ rheology of viscoelastic surfactant solutions using a hyperbolic geometry

•New mathematical approach to improve estimation of extensional viscosity.•Quantify in-situ rheology and mixed extensional-shear flow of viscoelastic fluids.•Identify critical flow rate after which elongational viscosity loses importance. [Display omitted] Microfluidic devices can be used to represe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of non-Newtonian fluid mechanics 2019-08, Vol.270, p.56-65
Hauptverfasser: García, Brayan F., Saraji, Soheil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•New mathematical approach to improve estimation of extensional viscosity.•Quantify in-situ rheology and mixed extensional-shear flow of viscoelastic fluids.•Identify critical flow rate after which elongational viscosity loses importance. [Display omitted] Microfluidic devices can be used to represent industrial and natural mixed extensional-shear flows and to measure, simultaneously, in-situ rheological properties of viscoelastic fluids. However, such measurements are challenging due to the nature of mixed flow kinematics. In this study, we present a new mathematical framework to quantify the extensional behavior of viscoelastic fluids in mixed flows through a hyperbolic contraction-expansion microfluidic device. This approach provides a better estimation of apparent extensional viscosity when the non-Newtonian fluid kinematic does not promote additional flow phenomena such as vortices, shear banding or high-velocity jet. We then apply this approach to analyze the mixed rheology of two different viscoelastic surfactant solutions. The results indicate that there is a critical flow rate where extensional properties of the studied viscoelastic fluids start losing importance possibly due to additional flow phenomena. We also found a viscoelastic transition regime from extensional tension-thickening to tension-thinning as flow rate increases.
ISSN:0377-0257
1873-2631
DOI:10.1016/j.jnnfm.2019.07.003