Evolution of the Norwegian plateau icefield Hardangerjøkulen since the ‘Little Ice Age’

The maximum ‘Little Ice Age’ (LIA) glacier extent provides a significant baseline to assess long-term glacier change and to place currently observed rates of glacier recession in a broader temporal context. To that end, we examine the evolution of the plateau icefield Hardangerjøkulen since the LIA....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Holocene (Sevenoaks) 2019-12, Vol.29 (12), p.1885-1905
Hauptverfasser: Weber, Paul, Boston, Clare M, Lovell, Harold, Andreassen, Liss M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The maximum ‘Little Ice Age’ (LIA) glacier extent provides a significant baseline to assess long-term glacier change and to place currently observed rates of glacier recession in a broader temporal context. To that end, we examine the evolution of the plateau icefield Hardangerjøkulen since the LIA. First, we reconstruct Hardangerjøkulen’s maximum LIA extent (~AD 1750) and subsequent recession based on the glacial landform record and aided by historical map interpretation. Ice-marginal moraines, glacial drift limits, trimlines, and identifiable erosion and weathering boundaries provide evidence of a LIA icefield with an area of 110 km2. Existing LIA model simulations of Hardangerjøkulen are not yet fully able to reproduce our reconstructed extent. Second, we compile a set of remotely sensed icefield outlines from successive time points in the 20th and 21st century to calculate icefield area and length change since the LIA. This reveals a substantial reduction in icefield size, with a total area loss of 41 km2 (37%; 2% 10 a–1) by 2010 and a cumulative frontal retreat averaging 1.3 km (29%; 5 m a–1) by 2013. Icefield recession has been greatest since the end of the 20th century, when rates of areal shrinkage increased to 6.5–10% 10 a–1 in 1995–2010, and the rate of average terminus retreat accelerated to 17 m a–1 in 2003–2010. Third, we present a relative dating approach, based on the known age of the different icefield outlines, that allows bracketing ages to be assigned to all ice-marginal landforms between any two outlines. This approach shows that episodes of moraine formation vary temporally between individual outlet glaciers of Hardangerjøkulen, suggesting that the moraine record of a single outlet glacier alone may not be sufficient to derive an icefield-wide picture of past ice advances, and thereby climate fluctuations.
ISSN:0959-6836
1477-0911
DOI:10.1177/0959683619865601