On Hybridizations of Fourth Order Kernel of the Beta Polynomial Family
The usual second order nonparametric kernel estimators are of wide uses in data analysis and visualization but constrained with slow convergence rate. Higher order kernels provide a faster convergence rates and are known to be bias reducing kernels. In this paper, we propose a hybrid of the fourth o...
Gespeichert in:
Veröffentlicht in: | Pakistan journal of statistics and operation research 2019-01, Vol.15 (3), p.819-829 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The usual second order nonparametric kernel estimators are of wide uses in data analysis and visualization but constrained with slow convergence rate. Higher order kernels provide a faster convergence rates and are known to be bias reducing kernels. In this paper, we propose a hybrid of the fourth order kernel which is a merger of two successive fourth order kernels and the statistical properties of these hybrid kernels were study. The results of our simulation reveals that the proposed higher order hybrid kernels outperformed their corresponding parent’s kernel functions using the asymptotic mean integrated squared error. |
---|---|
ISSN: | 1816-2711 2220-5810 |
DOI: | 10.18187/pjsor.v15i3.2625 |