On Hybridizations of Fourth Order Kernel of the Beta Polynomial Family

The usual second order nonparametric kernel estimators are of wide uses in data analysis and visualization but constrained with slow convergence rate. Higher order kernels provide a faster convergence rates and are known to be bias reducing kernels. In this paper, we propose a hybrid of the fourth o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pakistan journal of statistics and operation research 2019-01, Vol.15 (3), p.819-829
Hauptverfasser: SILOKO, Israel Uzuazor, IKPOTOKIN, Osayomore, SILOKO, Edith Akpevwe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The usual second order nonparametric kernel estimators are of wide uses in data analysis and visualization but constrained with slow convergence rate. Higher order kernels provide a faster convergence rates and are known to be bias reducing kernels. In this paper, we propose a hybrid of the fourth order kernel which is a merger of two successive fourth order kernels and the statistical properties of these hybrid kernels were study. The results of our simulation reveals that the proposed higher order hybrid kernels outperformed their corresponding parent’s kernel functions using the asymptotic mean integrated squared error.
ISSN:1816-2711
2220-5810
DOI:10.18187/pjsor.v15i3.2625