Thanks for Nothing: Predicting Zero-Valued Activations with Lightweight Convolutional Neural Networks
Convolutional neural networks (CNNs) introduce state-of-the-art results for various tasks with the price of high computational demands. Inspired by the observation that spatial correlation exists in CNN output feature maps (ofms), we propose a method to dynamically predict whether ofm activations ar...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-07 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Convolutional neural networks (CNNs) introduce state-of-the-art results for various tasks with the price of high computational demands. Inspired by the observation that spatial correlation exists in CNN output feature maps (ofms), we propose a method to dynamically predict whether ofm activations are zero-valued or not according to their neighboring activation values, thereby avoiding zero-valued activations and reducing the number of convolution operations. We implement the zero activation predictor (ZAP) with a lightweight CNN, which imposes negligible overheads and is easy to deploy on existing models. ZAPs are trained by mimicking hidden layer ouputs; thereby, enabling a parallel and label-free training. Furthermore, without retraining, each ZAP can be tuned to a different operating point trading accuracy for MAC reduction. |
---|---|
ISSN: | 2331-8422 |