Inorganic vacancy-ordered perovskite Cs2SnCl6:Bi/GaN heterojunction photodiode for narrowband, visible-blind UV detection
A heterojunction photodiode was fabricated from Bi doped Cs2SnCl6 nanoparticles (Cs2SnCl6:Bi NPs) spin-coated on an epitaxially grown GaN substrate. With the back illumination configuration, the heterojunction photodiode demonstrated excellent narrow-band UV sensing capability with a full wavelength...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2019-09, Vol.115 (12) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A heterojunction photodiode was fabricated from Bi doped Cs2SnCl6 nanoparticles (Cs2SnCl6:Bi NPs) spin-coated on an epitaxially grown GaN substrate. With the back illumination configuration, the heterojunction photodiode demonstrated excellent narrow-band UV sensing capability with a full wavelength of half maximum of 18 nm and a maximum detectivity of 1.2 × 1012 jones, which is promising for biomedical applications. In addition to the excellent narrow band UV sensitivity, the device also demonstrated a large linear dynamic range of 71 decibels (dB) and a fast photoresponse speed (a rise time of 0.75 μs and a fall time of 0.91 μs). The excellent performance is attributed to excellent carrier separation efficiency at the heterojunction interface and improved carrier collection efficiency through the multi-walled carbon nanotube (MWCNT) network. All the above advantages are of great importance for commercial deployment of perovskite-based photodetectors. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.5123226 |