Metric theorems for continued β-fractions
Let β > 1 be a root of the polynomial t 2 = a t + 1 with a ∈ N , a ≥ 1 or a root of the polynomial t 2 = a t - 1 with a ∈ N , a ≥ 3 . In this paper, we consider the metric properties of the continued β -fractions. We show that the Lebesgue measure of the following set E ( φ ) = { x ∈ [ 0 , 1 ) :...
Gespeichert in:
Veröffentlicht in: | Monatshefte für Mathematik 2019-10, Vol.190 (2), p.281-299 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
β
>
1
be a root of the polynomial
t
2
=
a
t
+
1
with
a
∈
N
,
a
≥
1
or a root of the polynomial
t
2
=
a
t
-
1
with
a
∈
N
,
a
≥
3
. In this paper, we consider the metric properties of the continued
β
-fractions. We show that the Lebesgue measure of the following set
E
(
φ
)
=
{
x
∈
[
0
,
1
)
:
a
n
(
x
)
≥
φ
(
n
)
for infinitely many
n
∈
N
}
is null or full according to the convergence or divergence of the series
∑
n
=
1
∞
1
φ
(
n
)
, where
a
n
(
x
)
is the
n
-th partial quotients in the continued
β
-fraction expansion of
x
and
φ
is a postive function defined on
N
. As a result, the set of numbers in the interval [0, 1) with bounded partial quotients in their continued
β
-fraction expansions is of zero Lebesgue measure. |
---|---|
ISSN: | 0026-9255 1436-5081 |
DOI: | 10.1007/s00605-019-01305-6 |