Template free mild hydrothermal synthesis of core–shell Cu2O(Cu)@CuO visible light photocatalysts for N-acetyl-para-aminophenol degradation
Solar photocatalytic processes are a promising approach to environmental remediation, however their implementation requires improvements in visible light harvesting and conversion and a focus on low cost, Earth abundant materials. Semiconducting copper oxides are promising visible light photocatalys...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2019, Vol.7 (36), p.20767-20777 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Solar photocatalytic processes are a promising approach to environmental remediation, however their implementation requires improvements in visible light harvesting and conversion and a focus on low cost, Earth abundant materials. Semiconducting copper oxides are promising visible light photocatalysts for solar fuels and wastewater depollution. Here we report the mild, hydrothermal (template-free) synthesis of core–shell Cu2O(Cu)@CuO photocatalytic architectures for the visible light photocatalytic degradation of N-acetyl-para-aminophenol (APAP). Hollow and rattle-like core–shell nanosphere aggregates with diameters between 200 nm and 2.5 μm formed under different synthesis conditions; all comprised an inner Cu2O shell, formed of 10–50 nm nanoparticles, surrounded by a protective corona of CuO nanoparticles. High reductant and structure-directing agent concentrations promoted the formation of a yolk-like Cu2O/Cu core, associated with improved photophysical properties, notably a high oxidation potential and suppressed charge carrier recombination, that correlated with the highest apparent quantum efficiency (8%) and rate of APAP removal (7 μmol g−1 min−1). Trapping experiments demonstrated hydroxyl radicals were the primary active species responsible for APAP oxidation to quinones and short chain carboxylic acids. Rattle-like core–shell Cu2O/Cu@CuO nanospheres exhibited excellent physiochemical stability and recyclability for APAP photocatalytic degradation. |
---|---|
ISSN: | 2050-7488 2050-7496 |
DOI: | 10.1039/c9ta07009e |