Semiconducting Nanocomposite with AIEgen‐Triggered Enhanced Photoluminescence and Photodegradation for Dual‐Modality Tumor Imaging and Therapy

Semiconducting polymer nanoparticles (SPNs) have potential in biological applications. While some SPNs have significant photothermal conversion efficiencies (PCEs) as photothermal and photoacoustic agents, other SPNs offer high fluorescence yields as photoluminescent agents. However, the energy bala...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2019-09, Vol.29 (38), p.n/a
Hauptverfasser: Li, Yawen, Liu, Zitong, Ma, Yufan, Chen, Yuzhi, Ma, Kun, Wang, Xuefei, Zhang, Deqing, Wang, Zhuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Semiconducting polymer nanoparticles (SPNs) have potential in biological applications. While some SPNs have significant photothermal conversion efficiencies (PCEs) as photothermal and photoacoustic agents, other SPNs offer high fluorescence yields as photoluminescent agents. However, the energy balance distribution in SPNs inhibits their successful applications in photoluminescence/photoacoustic (PL/PA) dual‐modality imaging. Additionally, the ultrastability of SPNs in vivo may cause damage to organisms. This work reports nanocomposite semiconducting polymer and tetraphenylethene nanoparticles (STNPs) constructed by semiconducting polymers (SPs) and tetraphenylethene aggregation‐induced emission luminogens (TPE AIEgens). The SP SPC10 endows good photothermal conversion ability, and the AIEgen TPBM supports enhanced photoluminescence of the STNPs. The results show that the STNPs can act as PL/PA dual‐modality imaging agents. The signal‐to‐noise (S/N) ratio in the PL modality reaches 8.7, and the imaging depth in the PA modality is 5.8 mm. The SPC10 in the STNPs can be decomposed under 90 mW cm−2 white light irradiation in 6 h without any other additional agents. Furthermore, the STNPs are sufficient for the treatment of xenograft 4T1 tumor‐bearing mice based on photothermal therapy. The nanocomposite STNPs achieve optimized dual‐modality PL/PA imaging and the AIEgen‐triggered in situ photodegradation of SPNs. These properties indicate the significant potential of STNPs in clinical diagnosis and noninvasive therapy. A photodegradable semiconducting nanocomposite containing aggregation‐induced emission luminogens is explored for photoluminescence/photoacoustic dual‐modality tumor imaging and therapy. The signal‐to‐noise ratio in the photoluminescence modality reaches 8.7, and the imaging depth in the photoacoustic modality is 5.8 mm. The nanocomposite can be degraded under light irradiation without any other additional agents in 6 h.
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.201903733