The charge carrier dynamics, efficiency and stability of two-dimensional material-based perovskite solar cells

Perovskites have been firmly established as one of the most promising materials for third-generation solar cells. There remain several great and lingering challenges to be addressed regarding device efficiency and stability. The photovoltaic efficiency of perovskite solar cells (PSCs) depends drasti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical Society reviews 2019-09, Vol.48 (18), p.4854-4891
Hauptverfasser: Wang, Bing, Iocozzia, James, Zhang, Meng, Ye, Meidan, Yan, Shicheng, Jin, Huile, Wang, Shun, Zou, Zhigang, Lin, Zhiqun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Perovskites have been firmly established as one of the most promising materials for third-generation solar cells. There remain several great and lingering challenges to be addressed regarding device efficiency and stability. The photovoltaic efficiency of perovskite solar cells (PSCs) depends drastically on the charge-carrier dynamics. This complex process includes charge-carrier generation, extraction, transport and collection, each of which needs to be modulated in a favorable manner to achieve high performance. Two-dimensional materials (TDMs) including graphene and its derivatives, transition metal dichalcogenides ( e.g. , MoS 2 , WS 2 ), black phosphorus (BP), metal nanosheets and two-dimensional (2D) perovskite active layers have attracted much attention for application in perovskite solar cells due to their high carrier mobility and tunable work function properties which greatly impact the charge carrier dynamics of PSCs. To date, significant advances have been achieved in the field of TDM-based PSCs. In this review, the recent progress in the development and application of TDMs ( i.e. , graphene, graphdiyne, transition metal dichalcogenides, BP, and others) as electrodes, hole transporting layers, electron transporting layers and buffer layers in PSCs is detailed. 2D perovskites as active absorber materials in PSCs are also summarized. The effect of TDMs and 2D perovskites on the charge carrier dynamics of PSCs is discussed to provide a comprehensive understanding of their optoelectronic processes. The challenges facing the PSC devices are emphasized with corresponding solutions to these problems provided with the overall goal of improving the efficiency and stability of photovoltaic devices. Recent advances in the use of two-dimensional (2D) materials for perovskites solar cells (PSCs) are summarized. The effects of their unique optical and electrical properties on the charge carrier dynamics of PSCs are detailed.
ISSN:0306-0012
1460-4744
DOI:10.1039/c9cs00254e