A biochar modified nickel-foam cathode with iron-foam catalyst in electro-Fenton for sulfamerazine degradation
[Display omitted] •A reed-derived biochar modified nickel-foam cathode was elaborated.•Sulfamerazine (SMR) was firstly degraded by electro-Fenton.•Fe2+- tetrapolyphosphate has a relative higher OH generation ability.•Absolute rate constant for oxidation of SMR by OH= (3.4 ± 0.09) × 109 M−1 s−1.•DFT...
Gespeichert in:
Veröffentlicht in: | Applied catalysis. B, Environmental Environmental, 2019-11, Vol.256, p.117796, Article 117796 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
•A reed-derived biochar modified nickel-foam cathode was elaborated.•Sulfamerazine (SMR) was firstly degraded by electro-Fenton.•Fe2+- tetrapolyphosphate has a relative higher OH generation ability.•Absolute rate constant for oxidation of SMR by OH= (3.4 ± 0.09) × 109 M−1 s−1.•DFT suggested hydroxylation of SMR was dominant during its oxidation degradation.
A nickel-foam cathode modified by a self-nitrogen-doped biochar derived from waste giant reed was synthesized. The fabricated cathode (B@Ni-F) proved to be with high oxygen reaction reactive (ORR) reactivity and H2O2 selectivity (70.41%) owing to the enrichment of oxygen functional groups and pyridinic N when low-temperature pyrolyzed biochar was incorporated. The charge transfer resistance of B@Ni-F decreased to 7.18 Ω, which was 95.7 Ω for the original nickel-foam, proving by electrochemical impedance spectroscopy (EIS). Expectedly, Its H2O2 accumulation improved 14 times, thus making it comparable with commonly used electrodes like carbon cloth and graphite plate. Subsequently, B@Ni-F cathode and iron-foam (Fe-F) catalyst were firstly used in the electro-Fenton (EF) process for sulfamerazine (SMR) degradation. Double-functional polyphosphate electrolytes including tetrapolyphosphate (4-TPP), tripolyphosphate (3-TPP), pyrophosphate (PP) and Na3PO4 were compared with the conventional Na2SO4 electrolyte in EF for SMR degradation. The absolute rate constant for oxidation of SMR by OH was determined to be (3.4 ± 0.09) × 109 M−1 s−1. SMR degradation enhancement in the presence of polyphosphate-based electrolytes is associated with bulk OH generation from Fe2+- polyphosphate ligand complexes via O2 activation. The Fe2+-3-TPP complexes have relatively higher oxidation ability compared to Fe2+-PP, Fe2+-PO4 species. A plausible SMR oxidation pathway is proposed based on the by-products detected by UPLC-MS/MS and density functional theory (DFT) calculations. The dominant SMR degradation pathway was hydroxylation of aniline residue of SMR, followed with the cleavage of SN and then breakage of aromatic rings. |
---|---|
ISSN: | 0926-3373 1873-3883 |
DOI: | 10.1016/j.apcatb.2019.117796 |