Automated replication of cone beam CT ‐guided treatments in the Pinnacle 3 treatment planning system for adaptive radiotherapy
IntroductionTime‐consuming manual methods have been required to register cone‐beam computed tomography (CBCT) images with plans in the Pinnacle3 treatment planning system in order to replicate delivered treatments for adaptive radiotherapy. These methods rely on fiducial marker (FM) placement during...
Gespeichert in:
Veröffentlicht in: | Journal of medical radiation sciences 2016-03, Vol.63 (1), p.48-58 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | IntroductionTime‐consuming manual methods have been required to register cone‐beam computed tomography (CBCT) images with plans in the Pinnacle3 treatment planning system in order to replicate delivered treatments for adaptive radiotherapy. These methods rely on fiducial marker (FM) placement during CBCT acquisition or the image mid‐point to localise the image isocentre. A quality assurance study was conducted to validate an automated CBCT‐plan registration method utilising the Digital Imaging and Communications in Medicine (DICOM) Structure Set (RS) and Spatial Registration (RE) files created during online image‐guided radiotherapy (IGRT).MethodsCBCTs of a phantom were acquired with FMs and predetermined setup errors using various online IGRT workflows. The CBCTs, DICOM RS and RE files were imported into Pinnacle3 plans of the phantom and the resulting automated CBCT‐plan registrations were compared to existing manual methods. A clinical protocol for the automated method was subsequently developed and tested retrospectively using CBCTs and plans for six bladder patients.ResultsThe automated CBCT‐plan registration method was successfully applied to thirty‐four phantom CBCT images acquired with an online 0 mm action level workflow. Ten CBCTs acquired with other IGRT workflows required manual workarounds. This was addressed during the development and testing of the clinical protocol using twenty‐eight patient CBCTs. The automated CBCT‐plan registrations were instantaneous, replicating delivered treatments in Pinnacle3 with errors of ±0.5 mm. These errors were comparable to mid‐point‐dependant manual registrations but superior to FM‐dependant manual registrations.ConclusionThe automated CBCT‐plan registration method quickly and reliably replicates delivered treatments in Pinnacle3 for adaptive radiotherapy. |
---|---|
ISSN: | 2051-3895 2051-3909 |
DOI: | 10.1002/jmrs.141 |