On Flexible Sequences

In the setting of nonstandard analysis, we introduce the notion of flexible sequence. The terms of flexible sequences are external numbers. These are a sort of analogue for the classical O(⋅) and o(⋅) notation for functions, and have algebraic properties similar to those of real numbers. The flexibi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica vietnamica 2019-12, Vol.44 (4), p.833-874
Hauptverfasser: Dinis, Bruno, Van Tran, Nam, Berg, Imme van den
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the setting of nonstandard analysis, we introduce the notion of flexible sequence. The terms of flexible sequences are external numbers. These are a sort of analogue for the classical O(⋅) and o(⋅) notation for functions, and have algebraic properties similar to those of real numbers. The flexibility originates from the fact that external numbers are stable under some shifts, additions, and multiplications. We introduce two forms of convergence and study their relation. We show that the usual properties of convergence of sequences hold or can be adapted to these new notions of convergence and give some applications.
ISSN:0251-4184
2315-4144
DOI:10.1007/s40306-018-00303-4