Sol–Gel‐Derived Spinel Ag‐Co3O4 Nanocomposite Thin Films for Resistive and Magnetization Switching Applications

Sol–gel‐derived spinel Ag‐Co3O4 nanocomposite thin films are synthesized using a spin‐coating method to investigate the resistive and magnetization switching effect. Compared with a pure Co3O4 thin‐film device, an Ag‐Co3O4 nanocomposite thin‐film device reveals significant improvement in switching p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. PSS-RRL. Rapid research letters 2019-09, Vol.13 (9), p.n/a
Hauptverfasser: Yao, Chuangye, Ismail, Muhammad, Hao, Aize, Kumar, Thatikonda Santhosh, Huang, Wenhua, Qin, Ni, Bao, Dinghua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sol–gel‐derived spinel Ag‐Co3O4 nanocomposite thin films are synthesized using a spin‐coating method to investigate the resistive and magnetization switching effect. Compared with a pure Co3O4 thin‐film device, an Ag‐Co3O4 nanocomposite thin‐film device reveals significant improvement in switching parameters. Uniformity and improvement in switching characteristics are attributed to the enhancement of local electric field and generation of oxygen vacancies by optimum Ag contents. Temperature dependence of resistive switching and magnetization analysis illustrate that induced oxygen vacancies and conversion of cation valence states (Co2+ and Co3+) are responsible for repairing and rupturing of conductive filaments. The findings offer a feasible and low‐cost sol–gel technique to fabricate an Ag‐Co3O4 nanocomposite‐based device for multifunctional resistive random access memory (RRAM) applications. A sol–gel‐derived Ag‐Co3O4 nanocomposite thin‐film device realizes the localization of conductive filament's growth controlled by Ag atoms, due to the enhancement of local electric field and generation of oxygen vacancies, which suppresses the random filament's growth/rupture and improves the uniformity of resistive switching parameters. The resistive and magnetization switching mechanism involves induced oxygen vacancies and conversion of cation valence states.
ISSN:1862-6254
1862-6270
DOI:10.1002/pssr.201900168