Robust Beamforming and Time Allocation for Full-Duplex Wireless-Powered Communication Networks

We propose a joint optimization of beamforming and time allocation for full-duplex (FD) wireless-powered communication networks (WPCNs). In FD-WPCNs, an FD-enabled hybrid access point (HAP) having multiple antennas broadcasts radio frequency (RF) energy to users, and concurrently each user transmits...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters 2019-09, Vol.23 (9), p.1665-1669
Hauptverfasser: Lee, Jai-Hoon, Cho, Yong-Ho, Park, Dong-Jo, Chang, Dong Eui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a joint optimization of beamforming and time allocation for full-duplex (FD) wireless-powered communication networks (WPCNs). In FD-WPCNs, an FD-enabled hybrid access point (HAP) having multiple antennas broadcasts radio frequency (RF) energy to users, and concurrently each user transmits its own information to the HAP. Due to a lack of fixed power supplies at the users, it is difficult for the HAP to have accurate channel state information (CSI) of all links. Therefore, in this letter, a robust algorithm is proposed to maximize the weighted sum rate of the users against the uncertainty of the CSI using the relationship between the weighted sum rate and the weighted sum of mean-square error. Numerical results demonstrate that the proposed algorithm provides robustness against imperfect channel knowledge and benefits of utilizing multiple antennas in the FD-WPCNs.
ISSN:1089-7798
1558-2558
DOI:10.1109/LCOMM.2019.2926034