Number of Nonzero Cubic Sums
The exponential sums S q a m = ∑ l = 1 q exp 2 πi al 3 + ml q − 1 are considered. For every positive integer q, closed-form expressions for the number of nonzero sums occurring among S q (a, 0), . . . , S q (a, q − 1) are found.
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2019-10, Vol.242 (4), p.575-585 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 585 |
---|---|
container_issue | 4 |
container_start_page | 575 |
container_title | Journal of mathematical sciences (New York, N.Y.) |
container_volume | 242 |
creator | Filonov, N. D. |
description | The exponential sums
S
q
a
m
=
∑
l
=
1
q
exp
2
πi
al
3
+
ml
q
−
1
are considered. For every positive integer q, closed-form expressions for the number of nonzero sums occurring among
S
q
(a, 0), . . . ,
S
q
(a, q
− 1) are found. |
doi_str_mv | 10.1007/s10958-019-04497-2 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2288806962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A610675341</galeid><sourcerecordid>A610675341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3732-74e8f2d8d9703ae7f36cd03ebb635e775d6564d717492a7e1e9e83e7983b38e53</originalsourceid><addsrcrecordid>eNp9kV1LwzAUhosoOKd_QLwoeOVFZj7anORyDD8GY4LT69CP09KxtjNpQf31ZlYYgyHnIofwPDmcvEFwzeiEUQr3jlEdK0KZJjSKNBB-EoxYDIIo0PGp7ylwIgRE58GFc2vqJanEKLhZ9nWKNmyLcNk232jbcNanVRau-tpdBmdFsnF49XeOg_fHh7fZM1m8PM1n0wXJBAhOIEJV8FzlGqhIEAohs5wKTFMpYgSIcxnLKAcGkeYJIEONSiBoJVKhMBbj4HZ4d2vbjx5dZ9Ztbxs_0nCulKJSS76nymSDpmqKtrNJVlcuM1PJqIRYRMxT5AhVYoM22bQNFpW_PuAnR3hfOdZVdlS4OxA80-FnVya9c2a-ej1k-cBmtnXOYmG2tqoT-2UYNbvgzBCc8cGZ3-DMbk8xSM7DTYl2_xv_WD8LHJUk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2288806962</pqid></control><display><type>article</type><title>Number of Nonzero Cubic Sums</title><source>SpringerLink Journals - AutoHoldings</source><creator>Filonov, N. D.</creator><creatorcontrib>Filonov, N. D.</creatorcontrib><description>The exponential sums
S
q
a
m
=
∑
l
=
1
q
exp
2
πi
al
3
+
ml
q
−
1
are considered. For every positive integer q, closed-form expressions for the number of nonzero sums occurring among
S
q
(a, 0), . . . ,
S
q
(a, q
− 1) are found.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-019-04497-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Mathematics ; Mathematics and Statistics ; Sums</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2019-10, Vol.242 (4), p.575-585</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3732-74e8f2d8d9703ae7f36cd03ebb635e775d6564d717492a7e1e9e83e7983b38e53</citedby><cites>FETCH-LOGICAL-c3732-74e8f2d8d9703ae7f36cd03ebb635e775d6564d717492a7e1e9e83e7983b38e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-019-04497-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-019-04497-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Filonov, N. D.</creatorcontrib><title>Number of Nonzero Cubic Sums</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>The exponential sums
S
q
a
m
=
∑
l
=
1
q
exp
2
πi
al
3
+
ml
q
−
1
are considered. For every positive integer q, closed-form expressions for the number of nonzero sums occurring among
S
q
(a, 0), . . . ,
S
q
(a, q
− 1) are found.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Sums</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kV1LwzAUhosoOKd_QLwoeOVFZj7anORyDD8GY4LT69CP09KxtjNpQf31ZlYYgyHnIofwPDmcvEFwzeiEUQr3jlEdK0KZJjSKNBB-EoxYDIIo0PGp7ylwIgRE58GFc2vqJanEKLhZ9nWKNmyLcNk232jbcNanVRau-tpdBmdFsnF49XeOg_fHh7fZM1m8PM1n0wXJBAhOIEJV8FzlGqhIEAohs5wKTFMpYgSIcxnLKAcGkeYJIEONSiBoJVKhMBbj4HZ4d2vbjx5dZ9Ztbxs_0nCulKJSS76nymSDpmqKtrNJVlcuM1PJqIRYRMxT5AhVYoM22bQNFpW_PuAnR3hfOdZVdlS4OxA80-FnVya9c2a-ej1k-cBmtnXOYmG2tqoT-2UYNbvgzBCc8cGZ3-DMbk8xSM7DTYl2_xv_WD8LHJUk</recordid><startdate>20191009</startdate><enddate>20191009</enddate><creator>Filonov, N. D.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20191009</creationdate><title>Number of Nonzero Cubic Sums</title><author>Filonov, N. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3732-74e8f2d8d9703ae7f36cd03ebb635e775d6564d717492a7e1e9e83e7983b38e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Sums</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Filonov, N. D.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Filonov, N. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Number of Nonzero Cubic Sums</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2019-10-09</date><risdate>2019</risdate><volume>242</volume><issue>4</issue><spage>575</spage><epage>585</epage><pages>575-585</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>The exponential sums
S
q
a
m
=
∑
l
=
1
q
exp
2
πi
al
3
+
ml
q
−
1
are considered. For every positive integer q, closed-form expressions for the number of nonzero sums occurring among
S
q
(a, 0), . . . ,
S
q
(a, q
− 1) are found.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-019-04497-2</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-3374 |
ispartof | Journal of mathematical sciences (New York, N.Y.), 2019-10, Vol.242 (4), p.575-585 |
issn | 1072-3374 1573-8795 |
language | eng |
recordid | cdi_proquest_journals_2288806962 |
source | SpringerLink Journals - AutoHoldings |
subjects | Mathematics Mathematics and Statistics Sums |
title | Number of Nonzero Cubic Sums |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T18%3A18%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Number%20of%20Nonzero%20Cubic%20Sums&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Filonov,%20N.%20D.&rft.date=2019-10-09&rft.volume=242&rft.issue=4&rft.spage=575&rft.epage=585&rft.pages=575-585&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-019-04497-2&rft_dat=%3Cgale_proqu%3EA610675341%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2288806962&rft_id=info:pmid/&rft_galeid=A610675341&rfr_iscdi=true |