On dynamic memory allocation in sliding-window parallel patterns for streaming analytics

This work studies the issues related to dynamic memory management in Data Stream Processing , an emerging paradigm enabling the real-time processing of live data streams. In this paper, we consider two streaming parallel patterns and we discuss different implementation variants related to how dynami...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of supercomputing 2019-08, Vol.75 (8), p.4114-4131
Hauptverfasser: Torquati, M., Mencagli, G., Drocco, M., Aldinucci, M., De Matteis, T., Danelutto, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work studies the issues related to dynamic memory management in Data Stream Processing , an emerging paradigm enabling the real-time processing of live data streams. In this paper, we consider two streaming parallel patterns and we discuss different implementation variants related to how dynamic memory is managed. The results show that the standard mechanisms provided by modern C++ are not entirely adequate for maximizing the performance. Instead, the combined use of an efficient general purpose memory allocator, a custom allocator optimized for the pattern considered and a custom variant of the C++ shared pointer mechanism, provides a performance improvement up to 16% on the best case.
ISSN:0920-8542
1573-0484
DOI:10.1007/s11227-017-2152-1