On dynamic memory allocation in sliding-window parallel patterns for streaming analytics
This work studies the issues related to dynamic memory management in Data Stream Processing , an emerging paradigm enabling the real-time processing of live data streams. In this paper, we consider two streaming parallel patterns and we discuss different implementation variants related to how dynami...
Gespeichert in:
Veröffentlicht in: | The Journal of supercomputing 2019-08, Vol.75 (8), p.4114-4131 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work studies the issues related to dynamic memory management in
Data Stream Processing
, an emerging paradigm enabling the real-time processing of live data streams. In this paper, we consider two streaming
parallel patterns
and we discuss different implementation variants related to how dynamic memory is managed. The results show that the standard mechanisms provided by modern C++ are not entirely adequate for maximizing the performance. Instead, the combined use of an efficient general purpose memory allocator, a custom allocator optimized for the pattern considered and a custom variant of the C++ shared pointer mechanism, provides a performance improvement up to 16% on the best case. |
---|---|
ISSN: | 0920-8542 1573-0484 |
DOI: | 10.1007/s11227-017-2152-1 |