Prediction models for performance, power, and energy efficiency of software executed on heterogeneous hardware
Heterogeneous computer environments are becoming commonplace so it is increasingly important to understand how and where we could execute a given algorithm the most efficiently. In this paper we propose a methodology that uses both static source code metrics, and dynamic execution time, power, and e...
Gespeichert in:
Veröffentlicht in: | The Journal of supercomputing 2019-08, Vol.75 (8), p.4001-4025 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Heterogeneous computer environments are becoming commonplace so it is increasingly important to understand
how
and
where
we could execute a given algorithm the most efficiently. In this paper we propose a methodology that uses both static source code metrics, and dynamic execution time, power, and energy measurements to build gain ratio prediction models. These models are trained on special benchmarks that have both sequential and parallel implementations and can be executed on various computing elements, e.g., on CPUs, GPUs, or FPGAs. After they are built, however, they can be applied to a new system using only the system’s static source code metrics which are much more easily computable than any dynamic measurement. We found that while estimating a continuous gain ratio is a much harder problem, we could predict the gain
category
(e.g., “slight improvement” or “large deterioration”) of porting to a specific configuration significantly more accurately than a random choice, using static information alone. We also conclude based on our benchmarks that parallelized implementations are less maintainable, thereby supporting the need for automatic transformations. |
---|---|
ISSN: | 0920-8542 1573-0484 |
DOI: | 10.1007/s11227-018-2252-6 |