Efficient anomaly detection from medical signals and images

Anomaly detection is a very vital area in medical signal and image processing due to its importance in automatic diagnosis. This paper presents three efficient anomaly detection approaches for applications related to Electroencephalogram (EEG) signal processing and retinal image processing. The firs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of speech technology 2019-09, Vol.22 (3), p.739-767
Hauptverfasser: Sedik, Ahmed, Emara, Heba M., Hamad, Asmaa, Shahin, Eman M., A. El-Hag, Noha, Khalil, Ali, Ibrahim, Fatma, Elsherbeny, Zeinab M., Elreefy, Mahmoud, Zahran, O., El-Khobby, Heba A., El Banby, Ghada M., Elwakeil, Mohamed, El-Shafai, Walid, Khalaf, Ashraf A. M., Rihan, Mohamed, Al-Nuaimy, Waleed, Taha, Taha E., Attia, Mahmoud A., El-Fishawy, Adel S., El-Rabaie, El-Sayed M., Dessouky, Moawad I., Messiha, Nagy W., Eldokany, Ibrahim M., Alotaiby, Turky N., Alshebeili, Saleh A., Abd El-Samie, Fathi E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Anomaly detection is a very vital area in medical signal and image processing due to its importance in automatic diagnosis. This paper presents three efficient anomaly detection approaches for applications related to Electroencephalogram (EEG) signal processing and retinal image processing. The first approach depends on the utilization of Scale-Invariant Feature Transform (SIFT) for automatic seizure detection. The second one is based on the utilization of digital filters in a statistical framework for seizure prediction. Finally, an automated Diabetic Retinopathy (DR) diagnosis approach is presented based on the segmentation and detection of anomalous objects from retinal images. The presented simulation results reveal the success of the proposed techniques towards automated medical diagnosis.
ISSN:1381-2416
1572-8110
DOI:10.1007/s10772-019-09610-z