Limiting Defects in n‐Type Multicrystalline Silicon Solar Cells
Multicrystalline (mc) solar cells made from n‐type silicon feedstock have shown record efficiencies of 22.3% in a tunnel‐oxide passivating contact (TOPCon) cell structure. Still, material‐related carrier recombination limits the attainable efficiency. Herein, the findings of metallic impurity and st...
Gespeichert in:
Veröffentlicht in: | Physica status solidi. A, Applications and materials science Applications and materials science, 2019-09, Vol.216 (17), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Multicrystalline (mc) solar cells made from n‐type silicon feedstock have shown record efficiencies of 22.3% in a tunnel‐oxide passivating contact (TOPCon) cell structure. Still, material‐related carrier recombination limits the attainable efficiency. Herein, the findings of metallic impurity and structural defect concentration present in n‐type mc silicon are summarized, and their limiting properties on carrier lifetime and cell performance are elaborated. Applying a dedicated model for carrier recombination at precipitate–silicon interfaces, it is demonstrated that carrier recombination at metallic precipitates may dominate in the analyzed material. Direct evidence of the recombination activity of iron precipitates in n‐type silicon is given by an analysis of intentionally grown iron precipitates: From a comparison of micro X‐ray fluorescence (μXRF) analyses of differently sized iron precipitates and local carrier recombination from micro‐photoluminescence (μPL), a direct correlation with enhanced carrier recombination is found. From these results, it is concluded that the high‐performance n‐type mc silicon is limited by recombination at (decorated) structural defects, namely, dislocation clusters and grain boundaries, whereas defects in the inner grains are not limiting the efficiency potential. Finally, cell degradation under illumination and elevated temperature for n‐type mc‐silicon solar cells are discussed.
This article reports on the characterization of defects limiting n‐type multicrystalline silicon solar cells. Both defect identification and quantitative assessment of the defects' impact on cell performance are addressed. A higher tolerance against common metallic point defects is found. Material limitation becomes evident at decorated structural defects, such as dislocation clusters and grain boundaries. |
---|---|
ISSN: | 1862-6300 1862-6319 |
DOI: | 10.1002/pssa.201900331 |