Structured generalized eigenvalue condition numbers for parameterized quasiseparable matrices

In this paper, when A and B are {1;1}-quasiseparable matrices, we consider the structured generalized relative eigenvalue condition numbers of the pair ( A , B ) with respect to relative perturbations of the parameters defining A and B in the quasiseparable and the Givens-vector representations of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BIT 2019-09, Vol.59 (3), p.695-720
Hauptverfasser: Diao, Huai-An, Meng, Qing-Le
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, when A and B are {1;1}-quasiseparable matrices, we consider the structured generalized relative eigenvalue condition numbers of the pair ( A , B ) with respect to relative perturbations of the parameters defining A and B in the quasiseparable and the Givens-vector representations of these matrices. A general expression is derived for the condition number of the generalized eigenvalue problems of the pair ( A , B ) , where A and B are any differentiable function of a vector of parameters with respect to perturbations of such parameters. Moreover, the explicit expressions of the corresponding structured condition numbers with respect to the quasiseparable and Givens-vector representation via tangents for { 1 ; 1 } -quasiseparable matrices are derived. Our proposed condition numbers can be computed efficiently by utilizing the recursive structure of quasiseparable matrices. We investigate relationships between various condition numbers of structured generalized eigenvalue problem when A and B are {1;1}-quasiseparable matrices. Numerical results show that there are situations in which the unstructured condition number can be much larger than the structured ones.
ISSN:0006-3835
1572-9125
DOI:10.1007/s10543-019-00748-5