Twisted conjugacy in PL-homeomorphism groups of the circle

Given an automorphism ϕ : Γ → Γ of a group, one has a left action of Γ on itself defined as g . x = g x ϕ ( g - 1 ) . The orbits of this action are called the Reidemeister classes or ϕ -twisted conjugacy classes. We denote by R ( ϕ ) ∈ N ∪ { ∞ } the Reidemeister number of ϕ , namely, the cardinality...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geometriae dedicata 2019-10, Vol.202 (1), p.311-320
Hauptverfasser: Gonçalves, Daciberg Lima, Sankaran, Parameswaran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given an automorphism ϕ : Γ → Γ of a group, one has a left action of Γ on itself defined as g . x = g x ϕ ( g - 1 ) . The orbits of this action are called the Reidemeister classes or ϕ -twisted conjugacy classes. We denote by R ( ϕ ) ∈ N ∪ { ∞ } the Reidemeister number of ϕ , namely, the cardinality of the orbit space R ( ϕ ) if it is finite and R ( ϕ ) = ∞ if R ( ϕ ) is infinite. The group Γ is said to have the R ∞ -property if R ( ϕ ) = ∞ for all automorphisms ϕ ∈ Aut ( Γ ) . We show that the generalized Thompson group T ( r ,  A ,  P ) has the R ∞ -property when the slope group P ⊂ R > 0 × is not cyclic.
ISSN:0046-5755
1572-9168
DOI:10.1007/s10711-018-0414-6