Twisted conjugacy in PL-homeomorphism groups of the circle
Given an automorphism ϕ : Γ → Γ of a group, one has a left action of Γ on itself defined as g . x = g x ϕ ( g - 1 ) . The orbits of this action are called the Reidemeister classes or ϕ -twisted conjugacy classes. We denote by R ( ϕ ) ∈ N ∪ { ∞ } the Reidemeister number of ϕ , namely, the cardinality...
Gespeichert in:
Veröffentlicht in: | Geometriae dedicata 2019-10, Vol.202 (1), p.311-320 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given an automorphism
ϕ
:
Γ
→
Γ
of a group, one has a left action of
Γ
on itself defined as
g
.
x
=
g
x
ϕ
(
g
-
1
)
. The orbits of this action are called the Reidemeister classes or
ϕ
-twisted conjugacy classes. We denote by
R
(
ϕ
)
∈
N
∪
{
∞
}
the Reidemeister number of
ϕ
, namely, the cardinality of the orbit space
R
(
ϕ
)
if it is finite and
R
(
ϕ
)
=
∞
if
R
(
ϕ
)
is infinite. The group
Γ
is said to have the
R
∞
-property if
R
(
ϕ
)
=
∞
for all automorphisms
ϕ
∈
Aut
(
Γ
)
. We show that the generalized Thompson group
T
(
r
,
A
,
P
) has the
R
∞
-property when the slope group
P
⊂
R
>
0
×
is not cyclic. |
---|---|
ISSN: | 0046-5755 1572-9168 |
DOI: | 10.1007/s10711-018-0414-6 |