K+ intercalated V2O5 nanorods with exposed facets as advanced cathodes for high energy and high rate zinc-ion batteries

Aqueous rechargeable zinc-ion batteries (ARZIBs) have drawn enormous attention because of their low-cost and eco-friendly cell components. However, designing high-performance cathode materials towards practical application of ARZIBs remains a major challenge. Therefore, in this contribution, a compr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2019, Vol.7 (35), p.20335-20347
Hauptverfasser: Islam, Saiful, Muhammad Hilmy Alfaruqi, Putro, Dimas Y, Vaiyapuri Soundharrajan, Sambandam, Balaji, Jeonggeun Jo, Park, Sohyun, Lee, Seulgi, Mathew, Vinod, Kim, Jaekook
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20347
container_issue 35
container_start_page 20335
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 7
creator Islam, Saiful
Muhammad Hilmy Alfaruqi
Putro, Dimas Y
Vaiyapuri Soundharrajan
Sambandam, Balaji
Jeonggeun Jo
Park, Sohyun
Lee, Seulgi
Mathew, Vinod
Kim, Jaekook
description Aqueous rechargeable zinc-ion batteries (ARZIBs) have drawn enormous attention because of their low-cost and eco-friendly cell components. However, designing high-performance cathode materials towards practical application of ARZIBs remains a major challenge. Therefore, in this contribution, a comprehensive study on K+ intercalated V2O5 (KVO) nanorods with exposed facets as a high-performance cathode for ARZIBs is presented. The KVO cathode exhibits remarkable discharge capacities of 439 and 286 mAh g−1 at current densities of 50 and 3000 mA g−1, respectively. Furthermore, it recovers 96% of the capacity after 1500 cycles at 8000 mA g−1. Impressively, the Zn/KVO battery offers a specific energy of 121 W h kg−1 at high specific power of 6480 W kg−1. The storage mechanism of the KVO cathode in an ARZIB is systematically elucidated using in operando synchrotron X-ray diffraction, ex situ synchrotron X-ray absorption spectroscopy, ex situ TEM analyses and first-principles calculations. The superior performance of the cathode is attributed to its unique exposed layer structure with high surface energy, high conductivity and low migration barrier for Zn2+ migration. This study provides insight into designing high-performance cathode materials for ARZIBs and other electrochemical systems.
doi_str_mv 10.1039/c9ta05767f
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2287493154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2287493154</sourcerecordid><originalsourceid>FETCH-LOGICAL-g220t-80159358aa6e850f544d77d2e8e44fd07cecebabcefe4a397176bede40eaab153</originalsourceid><addsrcrecordid>eNo9UE1LAzEQDaJgqb34CwIeZTWbTTbZoxS_sNCLei2zyWS7pSQ1Sa366w1UHB7MzJvHezCEXNbspmZNd2u6DEyqVrkTMuFMskqJrj39n7U-J7OUNqyUZqztugk5vFzT0WeMBraQ0dJ3vpTUgw8x2EQPY15T_NqFVE4ODOZEocB-gjeFMpDXwWKiLkS6Hoci9hiHbwreHvdYXOnP6E01Bk97yCVrxHRBzhxsE87--pS8Pdy_zp-qxfLxeX63qAbOWa40q2XXSA3QopbMSSGsUpajRiGcZcqgwR56gw4FNJ2qVdujRcEQoK9lMyVXR99dDB97THm1CfvoS-SKc13-09RSNL-o5F_q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2287493154</pqid></control><display><type>article</type><title>K+ intercalated V2O5 nanorods with exposed facets as advanced cathodes for high energy and high rate zinc-ion batteries</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Islam, Saiful ; Muhammad Hilmy Alfaruqi ; Putro, Dimas Y ; Vaiyapuri Soundharrajan ; Sambandam, Balaji ; Jeonggeun Jo ; Park, Sohyun ; Lee, Seulgi ; Mathew, Vinod ; Kim, Jaekook</creator><creatorcontrib>Islam, Saiful ; Muhammad Hilmy Alfaruqi ; Putro, Dimas Y ; Vaiyapuri Soundharrajan ; Sambandam, Balaji ; Jeonggeun Jo ; Park, Sohyun ; Lee, Seulgi ; Mathew, Vinod ; Kim, Jaekook</creatorcontrib><description>Aqueous rechargeable zinc-ion batteries (ARZIBs) have drawn enormous attention because of their low-cost and eco-friendly cell components. However, designing high-performance cathode materials towards practical application of ARZIBs remains a major challenge. Therefore, in this contribution, a comprehensive study on K+ intercalated V2O5 (KVO) nanorods with exposed facets as a high-performance cathode for ARZIBs is presented. The KVO cathode exhibits remarkable discharge capacities of 439 and 286 mAh g−1 at current densities of 50 and 3000 mA g−1, respectively. Furthermore, it recovers 96% of the capacity after 1500 cycles at 8000 mA g−1. Impressively, the Zn/KVO battery offers a specific energy of 121 W h kg−1 at high specific power of 6480 W kg−1. The storage mechanism of the KVO cathode in an ARZIB is systematically elucidated using in operando synchrotron X-ray diffraction, ex situ synchrotron X-ray absorption spectroscopy, ex situ TEM analyses and first-principles calculations. The superior performance of the cathode is attributed to its unique exposed layer structure with high surface energy, high conductivity and low migration barrier for Zn2+ migration. This study provides insight into designing high-performance cathode materials for ARZIBs and other electrochemical systems.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c9ta05767f</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Absorption spectroscopy ; Batteries ; Cathodes ; Electrochemistry ; Electrode materials ; Energy ; Exposure ; First principles ; Lithium ; Nanorods ; Potassium ; Rechargeable batteries ; Surface energy ; Surface properties ; Synchrotron radiation ; Vanadium pentoxide ; X ray absorption ; X-ray absorption spectroscopy ; X-ray diffraction ; Zinc</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (35), p.20335-20347</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Islam, Saiful</creatorcontrib><creatorcontrib>Muhammad Hilmy Alfaruqi</creatorcontrib><creatorcontrib>Putro, Dimas Y</creatorcontrib><creatorcontrib>Vaiyapuri Soundharrajan</creatorcontrib><creatorcontrib>Sambandam, Balaji</creatorcontrib><creatorcontrib>Jeonggeun Jo</creatorcontrib><creatorcontrib>Park, Sohyun</creatorcontrib><creatorcontrib>Lee, Seulgi</creatorcontrib><creatorcontrib>Mathew, Vinod</creatorcontrib><creatorcontrib>Kim, Jaekook</creatorcontrib><title>K+ intercalated V2O5 nanorods with exposed facets as advanced cathodes for high energy and high rate zinc-ion batteries</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Aqueous rechargeable zinc-ion batteries (ARZIBs) have drawn enormous attention because of their low-cost and eco-friendly cell components. However, designing high-performance cathode materials towards practical application of ARZIBs remains a major challenge. Therefore, in this contribution, a comprehensive study on K+ intercalated V2O5 (KVO) nanorods with exposed facets as a high-performance cathode for ARZIBs is presented. The KVO cathode exhibits remarkable discharge capacities of 439 and 286 mAh g−1 at current densities of 50 and 3000 mA g−1, respectively. Furthermore, it recovers 96% of the capacity after 1500 cycles at 8000 mA g−1. Impressively, the Zn/KVO battery offers a specific energy of 121 W h kg−1 at high specific power of 6480 W kg−1. The storage mechanism of the KVO cathode in an ARZIB is systematically elucidated using in operando synchrotron X-ray diffraction, ex situ synchrotron X-ray absorption spectroscopy, ex situ TEM analyses and first-principles calculations. The superior performance of the cathode is attributed to its unique exposed layer structure with high surface energy, high conductivity and low migration barrier for Zn2+ migration. This study provides insight into designing high-performance cathode materials for ARZIBs and other electrochemical systems.</description><subject>Absorption spectroscopy</subject><subject>Batteries</subject><subject>Cathodes</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Energy</subject><subject>Exposure</subject><subject>First principles</subject><subject>Lithium</subject><subject>Nanorods</subject><subject>Potassium</subject><subject>Rechargeable batteries</subject><subject>Surface energy</subject><subject>Surface properties</subject><subject>Synchrotron radiation</subject><subject>Vanadium pentoxide</subject><subject>X ray absorption</subject><subject>X-ray absorption spectroscopy</subject><subject>X-ray diffraction</subject><subject>Zinc</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9UE1LAzEQDaJgqb34CwIeZTWbTTbZoxS_sNCLei2zyWS7pSQ1Sa366w1UHB7MzJvHezCEXNbspmZNd2u6DEyqVrkTMuFMskqJrj39n7U-J7OUNqyUZqztugk5vFzT0WeMBraQ0dJ3vpTUgw8x2EQPY15T_NqFVE4ODOZEocB-gjeFMpDXwWKiLkS6Hoci9hiHbwreHvdYXOnP6E01Bk97yCVrxHRBzhxsE87--pS8Pdy_zp-qxfLxeX63qAbOWa40q2XXSA3QopbMSSGsUpajRiGcZcqgwR56gw4FNJ2qVdujRcEQoK9lMyVXR99dDB97THm1CfvoS-SKc13-09RSNL-o5F_q</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Islam, Saiful</creator><creator>Muhammad Hilmy Alfaruqi</creator><creator>Putro, Dimas Y</creator><creator>Vaiyapuri Soundharrajan</creator><creator>Sambandam, Balaji</creator><creator>Jeonggeun Jo</creator><creator>Park, Sohyun</creator><creator>Lee, Seulgi</creator><creator>Mathew, Vinod</creator><creator>Kim, Jaekook</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>2019</creationdate><title>K+ intercalated V2O5 nanorods with exposed facets as advanced cathodes for high energy and high rate zinc-ion batteries</title><author>Islam, Saiful ; Muhammad Hilmy Alfaruqi ; Putro, Dimas Y ; Vaiyapuri Soundharrajan ; Sambandam, Balaji ; Jeonggeun Jo ; Park, Sohyun ; Lee, Seulgi ; Mathew, Vinod ; Kim, Jaekook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g220t-80159358aa6e850f544d77d2e8e44fd07cecebabcefe4a397176bede40eaab153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Absorption spectroscopy</topic><topic>Batteries</topic><topic>Cathodes</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Energy</topic><topic>Exposure</topic><topic>First principles</topic><topic>Lithium</topic><topic>Nanorods</topic><topic>Potassium</topic><topic>Rechargeable batteries</topic><topic>Surface energy</topic><topic>Surface properties</topic><topic>Synchrotron radiation</topic><topic>Vanadium pentoxide</topic><topic>X ray absorption</topic><topic>X-ray absorption spectroscopy</topic><topic>X-ray diffraction</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Islam, Saiful</creatorcontrib><creatorcontrib>Muhammad Hilmy Alfaruqi</creatorcontrib><creatorcontrib>Putro, Dimas Y</creatorcontrib><creatorcontrib>Vaiyapuri Soundharrajan</creatorcontrib><creatorcontrib>Sambandam, Balaji</creatorcontrib><creatorcontrib>Jeonggeun Jo</creatorcontrib><creatorcontrib>Park, Sohyun</creatorcontrib><creatorcontrib>Lee, Seulgi</creatorcontrib><creatorcontrib>Mathew, Vinod</creatorcontrib><creatorcontrib>Kim, Jaekook</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Islam, Saiful</au><au>Muhammad Hilmy Alfaruqi</au><au>Putro, Dimas Y</au><au>Vaiyapuri Soundharrajan</au><au>Sambandam, Balaji</au><au>Jeonggeun Jo</au><au>Park, Sohyun</au><au>Lee, Seulgi</au><au>Mathew, Vinod</au><au>Kim, Jaekook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>K+ intercalated V2O5 nanorods with exposed facets as advanced cathodes for high energy and high rate zinc-ion batteries</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2019</date><risdate>2019</risdate><volume>7</volume><issue>35</issue><spage>20335</spage><epage>20347</epage><pages>20335-20347</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Aqueous rechargeable zinc-ion batteries (ARZIBs) have drawn enormous attention because of their low-cost and eco-friendly cell components. However, designing high-performance cathode materials towards practical application of ARZIBs remains a major challenge. Therefore, in this contribution, a comprehensive study on K+ intercalated V2O5 (KVO) nanorods with exposed facets as a high-performance cathode for ARZIBs is presented. The KVO cathode exhibits remarkable discharge capacities of 439 and 286 mAh g−1 at current densities of 50 and 3000 mA g−1, respectively. Furthermore, it recovers 96% of the capacity after 1500 cycles at 8000 mA g−1. Impressively, the Zn/KVO battery offers a specific energy of 121 W h kg−1 at high specific power of 6480 W kg−1. The storage mechanism of the KVO cathode in an ARZIB is systematically elucidated using in operando synchrotron X-ray diffraction, ex situ synchrotron X-ray absorption spectroscopy, ex situ TEM analyses and first-principles calculations. The superior performance of the cathode is attributed to its unique exposed layer structure with high surface energy, high conductivity and low migration barrier for Zn2+ migration. This study provides insight into designing high-performance cathode materials for ARZIBs and other electrochemical systems.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9ta05767f</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (35), p.20335-20347
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2287493154
source Royal Society Of Chemistry Journals 2008-
subjects Absorption spectroscopy
Batteries
Cathodes
Electrochemistry
Electrode materials
Energy
Exposure
First principles
Lithium
Nanorods
Potassium
Rechargeable batteries
Surface energy
Surface properties
Synchrotron radiation
Vanadium pentoxide
X ray absorption
X-ray absorption spectroscopy
X-ray diffraction
Zinc
title K+ intercalated V2O5 nanorods with exposed facets as advanced cathodes for high energy and high rate zinc-ion batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T02%3A47%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=K+%20intercalated%20V2O5%20nanorods%20with%20exposed%20facets%20as%20advanced%20cathodes%20for%20high%20energy%20and%20high%20rate%20zinc-ion%20batteries&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Islam,%20Saiful&rft.date=2019&rft.volume=7&rft.issue=35&rft.spage=20335&rft.epage=20347&rft.pages=20335-20347&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c9ta05767f&rft_dat=%3Cproquest%3E2287493154%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2287493154&rft_id=info:pmid/&rfr_iscdi=true