On the minimum vertex cover of generalized Petersen graphs

It is known that any vertex cover of the generalized Petersen graph P(n,k) has size at least n. Behsaz, Hatami and Mahmoodian characterized such graphs with minimum vertex cover numbers n and n+1, and those with k≤3. For k≥4 and n≥2k+2, we prove that if the 2-adic valuation of n is less than or equa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2019-08, Vol.266, p.309-318
Hauptverfasser: Jin, Dannielle D.D., Wang, David G.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is known that any vertex cover of the generalized Petersen graph P(n,k) has size at least n. Behsaz, Hatami and Mahmoodian characterized such graphs with minimum vertex cover numbers n and n+1, and those with k≤3. For k≥4 and n≥2k+2, we prove that if the 2-adic valuation of n is less than or equal to that of k, then the minimum vertex cover number of P(n,k) equals n+2 if and only if n∈{2k+2,3k−1,3k+1}.
ISSN:0166-218X
1872-6771
DOI:10.1016/j.dam.2018.12.011