Three-dimensional quantification of magnetic resonance imaging artifacts associated with shape factors
Differences in the volumes of artifacts caused by variously shaped titanium objects on magnetic resonance imaging (MRI) were evaluated. Spherical-, square cubic-, and regular tetrahedron-shaped isotropic, and elongated spherical-, elongated cubic-, and elongated tetrahedron-shaped anisotropic object...
Gespeichert in:
Veröffentlicht in: | Dental Materials Journal 2019/07/26, Vol.38(4), pp.638-645 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 645 |
---|---|
container_issue | 4 |
container_start_page | 638 |
container_title | Dental Materials Journal |
container_volume | 38 |
creator | KAWABATA, Iku IMAI, Haruki KANNO, Zuisei TETSUMURA, Akemi TSUTSUMI, Yusuke DOI, Hisashi ASHIDA, Maki KURABAYASHI, Tohru HANAWA, Takao YAMAMOTO, Toru ONO, Takashi |
description | Differences in the volumes of artifacts caused by variously shaped titanium objects on magnetic resonance imaging (MRI) were evaluated. Spherical-, square cubic-, and regular tetrahedron-shaped isotropic, and elongated spherical-, elongated cubic-, and elongated tetrahedron-shaped anisotropic objects, with identical volumes, were prepared. Samples were placed on a nickel-doped agarose gel phantom and covered with nickel-nitrate hexahydrate solution. Three-Tesla MR images were obtained using turbo spin echo and gradient echo sequences. Areas with ±30% of the signal intensity of the standard background value were considered artifacts. Sample volumes were deducted from these volumes to calculate the total artifact volumes. Isotropic samples had similar artifact volumes. For anisotropic samples, the artifact volume increased in proportion with the normalized projection area. MRI artifact size can be reduced by high anisotropic designs, and by positioning the long axis of the metal device as parallel as possible to the magnetic field axis. |
doi_str_mv | 10.4012/dmj.2018-197 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2287452021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2287452021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c590t-8f101ee76b3a2a90fff8c134c2d698f4a6147bdc7d64d938a7c9fc6ad56dd4de3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMotlZvniXg1a3JbnY3e9TiFxS81HOYJpM2pd2tSYr4783aj8sMzPvwwjyE3HI2Foznj2azGueMy4w39RkZcil5xouKn5Mhy2WdiVLUA3IVwoox0VRSXpJBwXktS1EOiZ0tPWJm3Abb4LoW1vR7B2101mmI6UA7SzewaDE6TT2GhLQaqUs31y4o-ISCjoFCCJ12ENHQHxeXNCxhi7TPOh-uyYWFdcCbwx6Rr9eX2eQ9m36-fUyeppkuGxYzaTnjiHU1LyCHhllrpeaF0LmpGmkFVFzUc6NrUwnTFBJq3VhdgSkrY4TBYkTu971b333vMES16nY-fRVUnmSIMmc5T9TDntK-C8GjVVufHvK_ijPVS1VJquqlqiQ14XeH0t18g-YEHy0m4HkPrEKEBZ6AXo5e439bIZXox7H1FOoleIVt8QeqIYyy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2287452021</pqid></control><display><type>article</type><title>Three-dimensional quantification of magnetic resonance imaging artifacts associated with shape factors</title><source>J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>KAWABATA, Iku ; IMAI, Haruki ; KANNO, Zuisei ; TETSUMURA, Akemi ; TSUTSUMI, Yusuke ; DOI, Hisashi ; ASHIDA, Maki ; KURABAYASHI, Tohru ; HANAWA, Takao ; YAMAMOTO, Toru ; ONO, Takashi</creator><creatorcontrib>KAWABATA, Iku ; IMAI, Haruki ; KANNO, Zuisei ; TETSUMURA, Akemi ; TSUTSUMI, Yusuke ; DOI, Hisashi ; ASHIDA, Maki ; KURABAYASHI, Tohru ; HANAWA, Takao ; YAMAMOTO, Toru ; ONO, Takashi</creatorcontrib><description>Differences in the volumes of artifacts caused by variously shaped titanium objects on magnetic resonance imaging (MRI) were evaluated. Spherical-, square cubic-, and regular tetrahedron-shaped isotropic, and elongated spherical-, elongated cubic-, and elongated tetrahedron-shaped anisotropic objects, with identical volumes, were prepared. Samples were placed on a nickel-doped agarose gel phantom and covered with nickel-nitrate hexahydrate solution. Three-Tesla MR images were obtained using turbo spin echo and gradient echo sequences. Areas with ±30% of the signal intensity of the standard background value were considered artifacts. Sample volumes were deducted from these volumes to calculate the total artifact volumes. Isotropic samples had similar artifact volumes. For anisotropic samples, the artifact volume increased in proportion with the normalized projection area. MRI artifact size can be reduced by high anisotropic designs, and by positioning the long axis of the metal device as parallel as possible to the magnetic field axis.</description><identifier>ISSN: 0287-4547</identifier><identifier>EISSN: 1881-1361</identifier><identifier>DOI: 10.4012/dmj.2018-197</identifier><identifier>PMID: 31178545</identifier><language>eng</language><publisher>Japan: The Japanese Society for Dental Materials and Devices</publisher><subject>Anisotropy ; Elongation ; Magnetic fields ; Magnetic resonance imaging ; Nickel ; NMR ; Nuclear magnetic resonance ; Resonance ; Shape ; Shape factor ; Tetrahedra ; Titanium</subject><ispartof>Dental Materials Journal, 2019/07/26, Vol.38(4), pp.638-645</ispartof><rights>2019 The Japanese Society for Dental Materials and Devices</rights><rights>Copyright Japan Science and Technology Agency 2019</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c590t-8f101ee76b3a2a90fff8c134c2d698f4a6147bdc7d64d938a7c9fc6ad56dd4de3</citedby><cites>FETCH-LOGICAL-c590t-8f101ee76b3a2a90fff8c134c2d698f4a6147bdc7d64d938a7c9fc6ad56dd4de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1882,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31178545$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>KAWABATA, Iku</creatorcontrib><creatorcontrib>IMAI, Haruki</creatorcontrib><creatorcontrib>KANNO, Zuisei</creatorcontrib><creatorcontrib>TETSUMURA, Akemi</creatorcontrib><creatorcontrib>TSUTSUMI, Yusuke</creatorcontrib><creatorcontrib>DOI, Hisashi</creatorcontrib><creatorcontrib>ASHIDA, Maki</creatorcontrib><creatorcontrib>KURABAYASHI, Tohru</creatorcontrib><creatorcontrib>HANAWA, Takao</creatorcontrib><creatorcontrib>YAMAMOTO, Toru</creatorcontrib><creatorcontrib>ONO, Takashi</creatorcontrib><title>Three-dimensional quantification of magnetic resonance imaging artifacts associated with shape factors</title><title>Dental Materials Journal</title><addtitle>Dent. Mater. J.</addtitle><description>Differences in the volumes of artifacts caused by variously shaped titanium objects on magnetic resonance imaging (MRI) were evaluated. Spherical-, square cubic-, and regular tetrahedron-shaped isotropic, and elongated spherical-, elongated cubic-, and elongated tetrahedron-shaped anisotropic objects, with identical volumes, were prepared. Samples were placed on a nickel-doped agarose gel phantom and covered with nickel-nitrate hexahydrate solution. Three-Tesla MR images were obtained using turbo spin echo and gradient echo sequences. Areas with ±30% of the signal intensity of the standard background value were considered artifacts. Sample volumes were deducted from these volumes to calculate the total artifact volumes. Isotropic samples had similar artifact volumes. For anisotropic samples, the artifact volume increased in proportion with the normalized projection area. MRI artifact size can be reduced by high anisotropic designs, and by positioning the long axis of the metal device as parallel as possible to the magnetic field axis.</description><subject>Anisotropy</subject><subject>Elongation</subject><subject>Magnetic fields</subject><subject>Magnetic resonance imaging</subject><subject>Nickel</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Resonance</subject><subject>Shape</subject><subject>Shape factor</subject><subject>Tetrahedra</subject><subject>Titanium</subject><issn>0287-4547</issn><issn>1881-1361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMotlZvniXg1a3JbnY3e9TiFxS81HOYJpM2pd2tSYr4783aj8sMzPvwwjyE3HI2Foznj2azGueMy4w39RkZcil5xouKn5Mhy2WdiVLUA3IVwoox0VRSXpJBwXktS1EOiZ0tPWJm3Abb4LoW1vR7B2101mmI6UA7SzewaDE6TT2GhLQaqUs31y4o-ISCjoFCCJ12ENHQHxeXNCxhi7TPOh-uyYWFdcCbwx6Rr9eX2eQ9m36-fUyeppkuGxYzaTnjiHU1LyCHhllrpeaF0LmpGmkFVFzUc6NrUwnTFBJq3VhdgSkrY4TBYkTu971b333vMES16nY-fRVUnmSIMmc5T9TDntK-C8GjVVufHvK_ijPVS1VJquqlqiQ14XeH0t18g-YEHy0m4HkPrEKEBZ6AXo5e439bIZXox7H1FOoleIVt8QeqIYyy</recordid><startdate>20190726</startdate><enddate>20190726</enddate><creator>KAWABATA, Iku</creator><creator>IMAI, Haruki</creator><creator>KANNO, Zuisei</creator><creator>TETSUMURA, Akemi</creator><creator>TSUTSUMI, Yusuke</creator><creator>DOI, Hisashi</creator><creator>ASHIDA, Maki</creator><creator>KURABAYASHI, Tohru</creator><creator>HANAWA, Takao</creator><creator>YAMAMOTO, Toru</creator><creator>ONO, Takashi</creator><general>The Japanese Society for Dental Materials and Devices</general><general>Japan Science and Technology Agency</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20190726</creationdate><title>Three-dimensional quantification of magnetic resonance imaging artifacts associated with shape factors</title><author>KAWABATA, Iku ; IMAI, Haruki ; KANNO, Zuisei ; TETSUMURA, Akemi ; TSUTSUMI, Yusuke ; DOI, Hisashi ; ASHIDA, Maki ; KURABAYASHI, Tohru ; HANAWA, Takao ; YAMAMOTO, Toru ; ONO, Takashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c590t-8f101ee76b3a2a90fff8c134c2d698f4a6147bdc7d64d938a7c9fc6ad56dd4de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anisotropy</topic><topic>Elongation</topic><topic>Magnetic fields</topic><topic>Magnetic resonance imaging</topic><topic>Nickel</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Resonance</topic><topic>Shape</topic><topic>Shape factor</topic><topic>Tetrahedra</topic><topic>Titanium</topic><toplevel>online_resources</toplevel><creatorcontrib>KAWABATA, Iku</creatorcontrib><creatorcontrib>IMAI, Haruki</creatorcontrib><creatorcontrib>KANNO, Zuisei</creatorcontrib><creatorcontrib>TETSUMURA, Akemi</creatorcontrib><creatorcontrib>TSUTSUMI, Yusuke</creatorcontrib><creatorcontrib>DOI, Hisashi</creatorcontrib><creatorcontrib>ASHIDA, Maki</creatorcontrib><creatorcontrib>KURABAYASHI, Tohru</creatorcontrib><creatorcontrib>HANAWA, Takao</creatorcontrib><creatorcontrib>YAMAMOTO, Toru</creatorcontrib><creatorcontrib>ONO, Takashi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Dental Materials Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KAWABATA, Iku</au><au>IMAI, Haruki</au><au>KANNO, Zuisei</au><au>TETSUMURA, Akemi</au><au>TSUTSUMI, Yusuke</au><au>DOI, Hisashi</au><au>ASHIDA, Maki</au><au>KURABAYASHI, Tohru</au><au>HANAWA, Takao</au><au>YAMAMOTO, Toru</au><au>ONO, Takashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional quantification of magnetic resonance imaging artifacts associated with shape factors</atitle><jtitle>Dental Materials Journal</jtitle><addtitle>Dent. Mater. J.</addtitle><date>2019-07-26</date><risdate>2019</risdate><volume>38</volume><issue>4</issue><spage>638</spage><epage>645</epage><pages>638-645</pages><issn>0287-4547</issn><eissn>1881-1361</eissn><abstract>Differences in the volumes of artifacts caused by variously shaped titanium objects on magnetic resonance imaging (MRI) were evaluated. Spherical-, square cubic-, and regular tetrahedron-shaped isotropic, and elongated spherical-, elongated cubic-, and elongated tetrahedron-shaped anisotropic objects, with identical volumes, were prepared. Samples were placed on a nickel-doped agarose gel phantom and covered with nickel-nitrate hexahydrate solution. Three-Tesla MR images were obtained using turbo spin echo and gradient echo sequences. Areas with ±30% of the signal intensity of the standard background value were considered artifacts. Sample volumes were deducted from these volumes to calculate the total artifact volumes. Isotropic samples had similar artifact volumes. For anisotropic samples, the artifact volume increased in proportion with the normalized projection area. MRI artifact size can be reduced by high anisotropic designs, and by positioning the long axis of the metal device as parallel as possible to the magnetic field axis.</abstract><cop>Japan</cop><pub>The Japanese Society for Dental Materials and Devices</pub><pmid>31178545</pmid><doi>10.4012/dmj.2018-197</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0287-4547 |
ispartof | Dental Materials Journal, 2019/07/26, Vol.38(4), pp.638-645 |
issn | 0287-4547 1881-1361 |
language | eng |
recordid | cdi_proquest_journals_2287452021 |
source | J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese; EZB-FREE-00999 freely available EZB journals |
subjects | Anisotropy Elongation Magnetic fields Magnetic resonance imaging Nickel NMR Nuclear magnetic resonance Resonance Shape Shape factor Tetrahedra Titanium |
title | Three-dimensional quantification of magnetic resonance imaging artifacts associated with shape factors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A19%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20quantification%20of%20magnetic%20resonance%20imaging%20artifacts%20associated%20with%20shape%20factors&rft.jtitle=Dental%20Materials%20Journal&rft.au=KAWABATA,%20Iku&rft.date=2019-07-26&rft.volume=38&rft.issue=4&rft.spage=638&rft.epage=645&rft.pages=638-645&rft.issn=0287-4547&rft.eissn=1881-1361&rft_id=info:doi/10.4012/dmj.2018-197&rft_dat=%3Cproquest_cross%3E2287452021%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2287452021&rft_id=info:pmid/31178545&rfr_iscdi=true |