Three-dimensional quantification of magnetic resonance imaging artifacts associated with shape factors

Differences in the volumes of artifacts caused by variously shaped titanium objects on magnetic resonance imaging (MRI) were evaluated. Spherical-, square cubic-, and regular tetrahedron-shaped isotropic, and elongated spherical-, elongated cubic-, and elongated tetrahedron-shaped anisotropic object...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dental Materials Journal 2019/07/26, Vol.38(4), pp.638-645
Hauptverfasser: KAWABATA, Iku, IMAI, Haruki, KANNO, Zuisei, TETSUMURA, Akemi, TSUTSUMI, Yusuke, DOI, Hisashi, ASHIDA, Maki, KURABAYASHI, Tohru, HANAWA, Takao, YAMAMOTO, Toru, ONO, Takashi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Differences in the volumes of artifacts caused by variously shaped titanium objects on magnetic resonance imaging (MRI) were evaluated. Spherical-, square cubic-, and regular tetrahedron-shaped isotropic, and elongated spherical-, elongated cubic-, and elongated tetrahedron-shaped anisotropic objects, with identical volumes, were prepared. Samples were placed on a nickel-doped agarose gel phantom and covered with nickel-nitrate hexahydrate solution. Three-Tesla MR images were obtained using turbo spin echo and gradient echo sequences. Areas with ±30% of the signal intensity of the standard background value were considered artifacts. Sample volumes were deducted from these volumes to calculate the total artifact volumes. Isotropic samples had similar artifact volumes. For anisotropic samples, the artifact volume increased in proportion with the normalized projection area. MRI artifact size can be reduced by high anisotropic designs, and by positioning the long axis of the metal device as parallel as possible to the magnetic field axis.
ISSN:0287-4547
1881-1361
DOI:10.4012/dmj.2018-197