Dynamic response of a size-dependent nanobeam to low velocity impact by a nanoparticle with considering atomic interaction forces

In the present paper, low velocity impact response of a size-dependent nanobeam in a thermal field with uniform temperature distribution has been investigated. The van-der Waals interaction force based on description of Lennard–Jonses is considered as the impact force between nanoparticle and nanobe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science Journal of mechanical engineering science, 2019-09, Vol.233 (18), p.6640-6655
Hauptverfasser: Noroozi, Mohammad, Ghadiri, Majid, Zajkani, Asghar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present paper, low velocity impact response of a size-dependent nanobeam in a thermal field with uniform temperature distribution has been investigated. The van-der Waals interaction force based on description of Lennard–Jonses is considered as the impact force between nanoparticle and nanobeam. According to third-order shear deformation beam theory, the governing equations are obtained using Hamilton's principle based on nonlocal strain-gradient theory. The Galerkin's method was adopted to solve the differential equations of nanobeam with simply supported and clamped boundary conditions. Afterward, the system of time-dependent equations by applying the fourth-order Runge–Kutta method is solved. The parametric study is presented to examine the effect of particle radius, initial velocity, temperature environment, the nonlocal parameter, and the length-scale parameter on the impact response of nanobeam.
ISSN:0954-4062
2041-2983
DOI:10.1177/0954406219864986