Highly efficient, visible active TiO2/CdS/ZnS photocatalyst, study of activity in an ultra low energy consumption LED based photo reactor
Nano Titania is the promising material for the photocatalytic process used in the minimization of the organic pollutant. However, there is need to enhance its absorption and surface properties to design a material having high efficacy. In this study, we report the synthesis of binary and ternary TiO...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2019-10, Vol.30 (19), p.17933-17946 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nano Titania is the promising material for the photocatalytic process used in the minimization of the organic pollutant. However, there is need to enhance its absorption and surface properties to design a material having high efficacy. In this study, we report the synthesis of binary and ternary TiO
2
nano-composites using the CdS and ZnS nanoparticles by adopting the low temperature two-step hydrothermal approach. The synthesized materials were characterized by using XRD, UV-DRS, FESEM, HRTEM, XPS and BET surface area analyzer. The photocatalytic activity was evaluated by taking the Rhodamine B (RhB) as model pollutant by employing an ultra low LED photo reactor. It was found that, the ternary TiO
2
/CdS/ZnS composite containing 10% ZnS and 20% CdS in wt. ratio showed the best activity towards the removal of RhB. The enhanced activity was due to improvement in the absorbance in the visible region and formation of heterojunction, which enhanced the lifetime of photoinduced charged species by the reduction in charge recombination. Reactive species, prominently responsible for degradation was identified by the scavenger action. The degradation pathway by which the RhB degraded is also discussed and found that degradation pathway altered with pH of solution. |
---|---|
ISSN: | 0957-4522 1573-482X |
DOI: | 10.1007/s10854-019-02147-6 |