Effect of extrusion on the microstructure and corrosion behaviors of biodegradable Mg–Zn–Y–Gd–Zr alloy
Magnesium-based alloys presented great potential for biodegradable implant materials. However, the poor mechanical properties and high corrosion rate blocked its extensive application. In this study, a new biodegradable Mg–Zn–Y–Gd–Zr alloy was fabricated and extruded. The microstructure, corrosion m...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2020, Vol.55 (3), p.1231-1245 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Magnesium-based alloys presented great potential for biodegradable implant materials. However, the poor mechanical properties and high corrosion rate blocked its extensive application. In this study, a new biodegradable Mg–Zn–Y–Gd–Zr alloy was fabricated and extruded. The microstructure, corrosion morphologies and corrosion products film of the as-cast, homogenized and as-extruded alloys were characterized by optical micrographs, scanning electron microscopy, X-ray diffraction and laser scanning confocal microscopy. Moreover, the corrosion mechanisms of the as-cast and as-extruded alloys were proposed, and the influencing factors of corrosion properties were discussed. The electrochemical test, immersion tests and corrosion morphologies demonstrated that the as-extruded alloy exhibited favorable corrosion properties. The as-cast and homogenized alloys displayed localized corrosion mode, and the as-extruded alloy displayed uniform corrosion mode. The Volta potential of the Mg
3
(Y,Gd)
2
Zn
3
phase relative to Mg matrix was measured by using Kelvin probe force microscopy. |
---|---|
ISSN: | 0022-2461 1573-4803 |
DOI: | 10.1007/s10853-019-03978-8 |