New global potential energy surfaces of the ground 3A′ and 3A″ states of the O(3P) + H2 system

This paper presents two new adiabatic, global potential energy surfaces (PESs) for the two lowest 3A′ and 3A″ electronic states of the O(3P) + H2 system. For each of these states, ab initio electronic energies were calculated for more than 5000 geometries using internally contracted multireference c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2019-09, Vol.151 (9), p.094307-094307
Hauptverfasser: Zanchet, Alexandre, Menéndez, Marta, Jambrina, Pablo G., Aoiz, F. Javier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents two new adiabatic, global potential energy surfaces (PESs) for the two lowest 3A′ and 3A″ electronic states of the O(3P) + H2 system. For each of these states, ab initio electronic energies were calculated for more than 5000 geometries using internally contracted multireference configuration interaction methods. The calculated points were then fitted using the ansatz by Aguado et al. [Comput. Phys. Commun. 108, 259 (1998)] leading to very accurate analytical potentials well adapted to perform reaction dynamics studies. Overall, the topographies of both PESs are in good agreement with the benchmark potentials of Rogers et al. [J. Phys. Chem. A 104, 2308 (2000)], but those presented in this work reproduce better the height and degeneracy of the two states at the saddle point. Moreover, the long range potential in the entrance channel does not require any cutoff. These features make the new PESs particularly suitable for a comparison of the dynamics on each of them. The new set of PESs was then used to perform quantum mechanics and quasiclassical trajectory calculations to determine differential and integral cross sections, which are compared to the experimental measurements by Garton et al. [J. Chem. Phys. 118, 1585 (2003)].
ISSN:0021-9606
1089-7690
DOI:10.1063/1.5111844