A Novel Seven-Level Active Neutral-Point-Clamped Converter With Reduced Active Switching Devices and DC-Link Voltage
This paper presents a novel seven-level inverter topology for medium-voltage high-power applications. It consists of eight active switches and two inner flying capacitor (FC) units forming a similar structure as in a conventional active neutral-point-clamped (ANPC) inverter. This unique arrangement...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power electronics 2019-11, Vol.34 (11), p.10492-10508 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a novel seven-level inverter topology for medium-voltage high-power applications. It consists of eight active switches and two inner flying capacitor (FC) units forming a similar structure as in a conventional active neutral-point-clamped (ANPC) inverter. This unique arrangement reduces the number of active and passive components. A simple modulation technique reduces cost and complexity in the control system design without compromising reactive power capability. In addition, compared to major conventional seven-level inverter topologies, such as the neutral point clamped, FC, cascaded H-bridge, and ANPC topologies, the new topology reduces the dc-link voltage requirement by 50%. This recued dc-link voltage makes the new topology appealing for various industrial applications. Experimental results from a 2.2-kVA prototype are presented to support the theoretical analysis presented in this paper. The prototype demonstrates a conversion efficiency of around 97.2% ± 1% for a wide load range. |
---|---|
ISSN: | 0885-8993 1941-0107 |
DOI: | 10.1109/TPEL.2019.2897061 |