Applying Item Response Trees to Personality Data in the Selection Context
Self-report personality scales are used frequently in personnel selection. Traditionally, researchers have assumed that individuals respond to items within these scales using a single-decision process. More recently, a flexible set of item response (IR) tree models have been developed that allow res...
Gespeichert in:
Veröffentlicht in: | Organizational research methods 2019-10, Vol.22 (4), p.1007-1018 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Self-report personality scales are used frequently in personnel selection. Traditionally, researchers have assumed that individuals respond to items within these scales using a single-decision process. More recently, a flexible set of item response (IR) tree models have been developed that allow researchers to investigate multiple-decision processes. In the present research, we found that IR tree models fit the data better than a single-decision IR model when fitted to seven self-report personality scales used in a concurrent criterion-related validity study. In addition, we found evidence that the latent variable underlying the direction of a response (agree or disagree) decision process predicted job performance better than latent variables reflecting the other decision processes for the best fitting IR tree model. |
---|---|
ISSN: | 1094-4281 1552-7425 |
DOI: | 10.1177/1094428118780310 |