Unraveling the Light‐Activated Reaction Mechanism in a Catalytically Competent Key Intermediate of a Multifunctional Molecular Catalyst for Artificial Photosynthesis
Understanding photodriven multielectron reaction pathways requires the identification and spectroscopic characterization of intermediates and their excited‐state dynamics, which is very challenging due to their short lifetimes. To the best of our knowledge, this manuscript reports for the first time...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie 2019-09, Vol.131 (37), p.13274-13282 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Understanding photodriven multielectron reaction pathways requires the identification and spectroscopic characterization of intermediates and their excited‐state dynamics, which is very challenging due to their short lifetimes. To the best of our knowledge, this manuscript reports for the first time on in situ spectroelectrochemistry as an alternative approach to study the excited‐state properties of reactive intermediates of photocatalytic cycles. UV/Vis, resonance‐Raman, and transient‐absorption spectroscopy have been employed to characterize the catalytically competent intermediate [(tbbpy)2RuII(tpphz)RhICp*] of [(tbbpy)2Ru(tpphz)Rh(Cp*)Cl]Cl(PF6)2 (Ru(tpphz)RhCp*), a photocatalyst for the hydrogenation of nicotinamide (NAD‐analogue) and proton reduction, generated by electrochemical and chemical reduction. Electronic transitions shifting electron density from the activated catalytic center to the bridging tpphz ligand significantly reduce the catalytic activity upon visible‐light irradiation.
Das Uhrwerk eines Photokatalysators: Mittels Spektroelektrochemie, die UV/Vis‐, Resonanz‐Raman‐ sowie transiente Absorptionsspektroskopie verwendet, wurden die reaktiven Intermediate im Photokatalysezyklus von [(tbbpy)2Ru(tpphz)Rh(Cp*)Cl]Cl(PF6)2 im Detail untersucht. Photoinduzierte elektronische Übergänge, die die katalytische Effizienz einschränken, wurden identifiziert, was bei der Strukturverbesserung helfen kann. |
---|---|
ISSN: | 0044-8249 1521-3757 |
DOI: | 10.1002/ange.201907247 |