On a time–space fractional backward diffusion problem with inexact orders
In this paper, we focus on the backward diffusion problem with the Caputo fractional derivative operator in time and a general spatial nonlocal operator. For T>0 and s∈[0,T), we consider the problem (Ps) of recovering the distribution u(x,s) from a measure of the final data u(x,T) for the followi...
Gespeichert in:
Veröffentlicht in: | Computers & mathematics with applications (1987) 2019-09, Vol.78 (5), p.1572-1593 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we focus on the backward diffusion problem with the Caputo fractional derivative operator in time and a general spatial nonlocal operator. For T>0 and s∈[0,T), we consider the problem (Ps) of recovering the distribution u(x,s) from a measure of the final data u(x,T) for the following non-homogeneous time–space fractional diffusion equation Dtαu(x,t)+KβLγu(x,t)=f(x,t)inRn×(0,T)subject to the final condition u(x,T)=uT(x)inRn. The derivative orders and the nonlocal operator are perturbed with noises. Firstly, for 0 |
---|---|
ISSN: | 0898-1221 1873-7668 |
DOI: | 10.1016/j.camwa.2019.03.014 |