On a time–space fractional backward diffusion problem with inexact orders

In this paper, we focus on the backward diffusion problem with the Caputo fractional derivative operator in time and a general spatial nonlocal operator. For T>0 and s∈[0,T), we consider the problem (Ps) of recovering the distribution u(x,s) from a measure of the final data u(x,T) for the followi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2019-09, Vol.78 (5), p.1572-1593
Hauptverfasser: Trong, Dang Duc, Hai, Dinh Nguyen Duy, Dien, Nguyen Minh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we focus on the backward diffusion problem with the Caputo fractional derivative operator in time and a general spatial nonlocal operator. For T>0 and s∈[0,T), we consider the problem (Ps) of recovering the distribution u(x,s) from a measure of the final data u(x,T) for the following non-homogeneous time–space fractional diffusion equation Dtαu(x,t)+KβLγu(x,t)=f(x,t)inRn×(0,T)subject to the final condition u(x,T)=uT(x)inRn. The derivative orders and the nonlocal operator are perturbed with noises. Firstly, for 0
ISSN:0898-1221
1873-7668
DOI:10.1016/j.camwa.2019.03.014