Characterizing Sums of Squares by Their Distributions

In a linear model under normality it is shown that the error sum of squares is characterized by its distribution. Two proofs are presented, one using the almost-sure uniqueness of uniformly minimum variance unbiased estimators and the other using linear algebra. Two illustrations of how this charact...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The American statistician 1997-02, Vol.51 (1), p.55-58
Hauptverfasser: Seely, Justus F., Birkes, David, Lee, Youngjo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 58
container_issue 1
container_start_page 55
container_title The American statistician
container_volume 51
creator Seely, Justus F.
Birkes, David
Lee, Youngjo
description In a linear model under normality it is shown that the error sum of squares is characterized by its distribution. Two proofs are presented, one using the almost-sure uniqueness of uniformly minimum variance unbiased estimators and the other using linear algebra. Two illustrations of how this characterization can be used are given.
doi_str_mv 10.1080/00031305.1997.10473590
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_228457234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2684696</jstor_id><sourcerecordid>2684696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-3c568cd440ceab6e94d18437823f0227012ae48d78773c3e56b2f9806769e8403</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKt_QRb1unXynRylfoLgofUc0jRrU9pNm-wi9de7pa14EU_DDM-8MzwIXWIYYFBwCwAUU-ADrLXsRkxSruEI9TCnsiSS4mPU20LlljpFZznPuxakID3EhzObrGt8Cl-h_ihG7TIXsSpG69Ymn4vJphjPfEjFfchNCpO2CbHO5-iksovsL_a1j94fH8bD5_L17ellePdaOkp1U1LHhXJTxsB5OxFesylWjEpFaAWESMDEeqamUklJHfVcTEilFQgptFcMaB9d7XJXKa5bnxszj22qu5OGEMW4JJR10PVfEJYcVGdBqI4SO8qlmHPylVmlsLRpYzCYrUdz8Gi2Hs3BY7d4s4-32dlFlWztQv7ZJlJpDr-weW5i-h1OKEhDhGJCiw6722GhrmJa2s-YFlPT2M0ipkM0_eejb7Nujow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>228457234</pqid></control><display><type>article</type><title>Characterizing Sums of Squares by Their Distributions</title><source>Periodicals Index Online</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Seely, Justus F. ; Birkes, David ; Lee, Youngjo</creator><creatorcontrib>Seely, Justus F. ; Birkes, David ; Lee, Youngjo</creatorcontrib><description>In a linear model under normality it is shown that the error sum of squares is characterized by its distribution. Two proofs are presented, one using the almost-sure uniqueness of uniformly minimum variance unbiased estimators and the other using linear algebra. Two illustrations of how this characterization can be used are given.</description><identifier>ISSN: 0003-1305</identifier><identifier>EISSN: 1537-2731</identifier><identifier>DOI: 10.1080/00031305.1997.10473590</identifier><identifier>CODEN: ASTAAJ</identifier><language>eng</language><publisher>Alexandria, VA: Taylor &amp; Francis Group</publisher><subject>Algebra ; Chi-squared distribution ; College professors ; Continuous functions ; Covariance matrices ; Degrees of freedom ; Distribution theory ; Error sum of squares ; Exact sciences and technology ; Least squares ; Linear algebra ; Linear hypothesis ; Linear model ; Linear models ; Mathematical analysis ; Mathematical models ; Mathematical theorems ; Mathematical vectors ; Mathematics ; Matrices ; Probability and statistics ; Sciences and techniques of general use ; Statistical inference ; Statistical variance ; Statistics ; Teacher's Corner</subject><ispartof>The American statistician, 1997-02, Vol.51 (1), p.55-58</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1997</rights><rights>Copyright 1997 American Statistical Association</rights><rights>1997 INIST-CNRS</rights><rights>Copyright American Statistical Association Feb 1997</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-3c568cd440ceab6e94d18437823f0227012ae48d78773c3e56b2f9806769e8403</citedby><cites>FETCH-LOGICAL-c339t-3c568cd440ceab6e94d18437823f0227012ae48d78773c3e56b2f9806769e8403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2684696$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2684696$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27869,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2789500$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Seely, Justus F.</creatorcontrib><creatorcontrib>Birkes, David</creatorcontrib><creatorcontrib>Lee, Youngjo</creatorcontrib><title>Characterizing Sums of Squares by Their Distributions</title><title>The American statistician</title><description>In a linear model under normality it is shown that the error sum of squares is characterized by its distribution. Two proofs are presented, one using the almost-sure uniqueness of uniformly minimum variance unbiased estimators and the other using linear algebra. Two illustrations of how this characterization can be used are given.</description><subject>Algebra</subject><subject>Chi-squared distribution</subject><subject>College professors</subject><subject>Continuous functions</subject><subject>Covariance matrices</subject><subject>Degrees of freedom</subject><subject>Distribution theory</subject><subject>Error sum of squares</subject><subject>Exact sciences and technology</subject><subject>Least squares</subject><subject>Linear algebra</subject><subject>Linear hypothesis</subject><subject>Linear model</subject><subject>Linear models</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematical theorems</subject><subject>Mathematical vectors</subject><subject>Mathematics</subject><subject>Matrices</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Statistical inference</subject><subject>Statistical variance</subject><subject>Statistics</subject><subject>Teacher's Corner</subject><issn>0003-1305</issn><issn>1537-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkE1LAzEQhoMoWKt_QRb1unXynRylfoLgofUc0jRrU9pNm-wi9de7pa14EU_DDM-8MzwIXWIYYFBwCwAUU-ADrLXsRkxSruEI9TCnsiSS4mPU20LlljpFZznPuxakID3EhzObrGt8Cl-h_ihG7TIXsSpG69Ymn4vJphjPfEjFfchNCpO2CbHO5-iksovsL_a1j94fH8bD5_L17ellePdaOkp1U1LHhXJTxsB5OxFesylWjEpFaAWESMDEeqamUklJHfVcTEilFQgptFcMaB9d7XJXKa5bnxszj22qu5OGEMW4JJR10PVfEJYcVGdBqI4SO8qlmHPylVmlsLRpYzCYrUdz8Gi2Hs3BY7d4s4-32dlFlWztQv7ZJlJpDr-weW5i-h1OKEhDhGJCiw6722GhrmJa2s-YFlPT2M0ipkM0_eejb7Nujow</recordid><startdate>19970201</startdate><enddate>19970201</enddate><creator>Seely, Justus F.</creator><creator>Birkes, David</creator><creator>Lee, Youngjo</creator><general>Taylor &amp; Francis Group</general><general>American Statistical Association</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JTYFY</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>0-V</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88C</scope><scope>88F</scope><scope>88I</scope><scope>88J</scope><scope>8AF</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>M0C</scope><scope>M0R</scope><scope>M0T</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2R</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>19970201</creationdate><title>Characterizing Sums of Squares by Their Distributions</title><author>Seely, Justus F. ; Birkes, David ; Lee, Youngjo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-3c568cd440ceab6e94d18437823f0227012ae48d78773c3e56b2f9806769e8403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Algebra</topic><topic>Chi-squared distribution</topic><topic>College professors</topic><topic>Continuous functions</topic><topic>Covariance matrices</topic><topic>Degrees of freedom</topic><topic>Distribution theory</topic><topic>Error sum of squares</topic><topic>Exact sciences and technology</topic><topic>Least squares</topic><topic>Linear algebra</topic><topic>Linear hypothesis</topic><topic>Linear model</topic><topic>Linear models</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematical theorems</topic><topic>Mathematical vectors</topic><topic>Mathematics</topic><topic>Matrices</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Statistical inference</topic><topic>Statistical variance</topic><topic>Statistics</topic><topic>Teacher's Corner</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seely, Justus F.</creatorcontrib><creatorcontrib>Birkes, David</creatorcontrib><creatorcontrib>Lee, Youngjo</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 37</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Consumer Health Database</collection><collection>Healthcare Administration Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Social Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>The American statistician</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seely, Justus F.</au><au>Birkes, David</au><au>Lee, Youngjo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterizing Sums of Squares by Their Distributions</atitle><jtitle>The American statistician</jtitle><date>1997-02-01</date><risdate>1997</risdate><volume>51</volume><issue>1</issue><spage>55</spage><epage>58</epage><pages>55-58</pages><issn>0003-1305</issn><eissn>1537-2731</eissn><coden>ASTAAJ</coden><abstract>In a linear model under normality it is shown that the error sum of squares is characterized by its distribution. Two proofs are presented, one using the almost-sure uniqueness of uniformly minimum variance unbiased estimators and the other using linear algebra. Two illustrations of how this characterization can be used are given.</abstract><cop>Alexandria, VA</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/00031305.1997.10473590</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-1305
ispartof The American statistician, 1997-02, Vol.51 (1), p.55-58
issn 0003-1305
1537-2731
language eng
recordid cdi_proquest_journals_228457234
source Periodicals Index Online; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects Algebra
Chi-squared distribution
College professors
Continuous functions
Covariance matrices
Degrees of freedom
Distribution theory
Error sum of squares
Exact sciences and technology
Least squares
Linear algebra
Linear hypothesis
Linear model
Linear models
Mathematical analysis
Mathematical models
Mathematical theorems
Mathematical vectors
Mathematics
Matrices
Probability and statistics
Sciences and techniques of general use
Statistical inference
Statistical variance
Statistics
Teacher's Corner
title Characterizing Sums of Squares by Their Distributions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A38%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterizing%20Sums%20of%20Squares%20by%20Their%20Distributions&rft.jtitle=The%20American%20statistician&rft.au=Seely,%20Justus%20F.&rft.date=1997-02-01&rft.volume=51&rft.issue=1&rft.spage=55&rft.epage=58&rft.pages=55-58&rft.issn=0003-1305&rft.eissn=1537-2731&rft.coden=ASTAAJ&rft_id=info:doi/10.1080/00031305.1997.10473590&rft_dat=%3Cjstor_proqu%3E2684696%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=228457234&rft_id=info:pmid/&rft_jstor_id=2684696&rfr_iscdi=true