Characterizing Sums of Squares by Their Distributions
In a linear model under normality it is shown that the error sum of squares is characterized by its distribution. Two proofs are presented, one using the almost-sure uniqueness of uniformly minimum variance unbiased estimators and the other using linear algebra. Two illustrations of how this charact...
Gespeichert in:
Veröffentlicht in: | The American statistician 1997-02, Vol.51 (1), p.55-58 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In a linear model under normality it is shown that the error sum of squares is characterized by its distribution. Two proofs are presented, one using the almost-sure uniqueness of uniformly minimum variance unbiased estimators and the other using linear algebra. Two illustrations of how this characterization can be used are given. |
---|---|
ISSN: | 0003-1305 1537-2731 |
DOI: | 10.1080/00031305.1997.10473590 |