Characterizing Sums of Squares by Their Distributions

In a linear model under normality it is shown that the error sum of squares is characterized by its distribution. Two proofs are presented, one using the almost-sure uniqueness of uniformly minimum variance unbiased estimators and the other using linear algebra. Two illustrations of how this charact...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The American statistician 1997-02, Vol.51 (1), p.55-58
Hauptverfasser: Seely, Justus F., Birkes, David, Lee, Youngjo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In a linear model under normality it is shown that the error sum of squares is characterized by its distribution. Two proofs are presented, one using the almost-sure uniqueness of uniformly minimum variance unbiased estimators and the other using linear algebra. Two illustrations of how this characterization can be used are given.
ISSN:0003-1305
1537-2731
DOI:10.1080/00031305.1997.10473590