Effect of palladium on the microstructure and grain boundary complexions in SiC
One of the main challenges in the study of TRISO (Tristructural Isotropic) coated fuel particles is the understanding of the diffusion of fission products through SiC. Among the elements produced inside the uranium kernel, it has been suggested that Pd might enhance the diffusion of other fission pr...
Gespeichert in:
Veröffentlicht in: | Journal of the American Ceramic Society 2019-11, Vol.102 (11), p.6439-6442 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | One of the main challenges in the study of TRISO (Tristructural Isotropic) coated fuel particles is the understanding of the diffusion of fission products through SiC. Among the elements produced inside the uranium kernel, it has been suggested that Pd might enhance the diffusion of other fission products. In this work, we have studied the interaction between Pd and SiC. We have observed that as Pd diffuses it can change the chemical composition and microstructure of SiC. Electron Backscattered Diffraction (EBSD) analysis showed that Pd increased the amount of high angle grain boundaries from 47% to 59%. Furthermore, we have observed that as Pd diffused, it changed the composition of SiC by leaving a trail of excess carbon at the grain boundary. This change in localized chemical composition and microstructure suggests a grain boundary complexion transition induced by Pd and a new way in which Pd can lead to faster diffusion routes for other fission products. |
---|---|
ISSN: | 0002-7820 1551-2916 |
DOI: | 10.1111/jace.16622 |