Optimal energy decay in a one-dimensional wave-heat-wave system

Harnessing the abstract power of the celebrated result due to Borichev and Tomilov (Math.\ Ann.\ 347:455--478, 2010, no.\ 2), we study the energy decay in a one-dimensional coupled wave-heat-wave system. We obtain a sharp estimate for the rate of energy decay of classical solutions by first proving...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-09
1. Verfasser: Ng, Abraham C S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Harnessing the abstract power of the celebrated result due to Borichev and Tomilov (Math.\ Ann.\ 347:455--478, 2010, no.\ 2), we study the energy decay in a one-dimensional coupled wave-heat-wave system. We obtain a sharp estimate for the rate of energy decay of classical solutions by first proving a growth bound for the resolvent of the semigroup generator and then applying the asymptotic theory of \(C_0\)-semigroups. The present article can be naturally thought of as an extension of a recent paper by Batty, Paunonen, and Seifert (J.\ Evol.\ Equ.\ 16:649--664, 2016) which studied a similar wave-heat system via the same theoretical framework.
ISSN:2331-8422