Splitting and parameter dependence in the category of PLH spaces
We extend the splitting theory for PLS spaces and the corresponding parameter dependence problem to the context of hilbertizable spaces. In particular, we characterize for fixed PLH spaces E and X , i.e. strongly reduced projective limits of inductive limits of Hilbert spaces, the splitting of each...
Gespeichert in:
Veröffentlicht in: | Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas Físicas y Naturales. Serie A, Matemáticas, 2019-01, Vol.113 (1), p.59-93 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We extend the splitting theory for
PLS
spaces and the corresponding parameter dependence problem to the context of hilbertizable spaces. In particular, we characterize for fixed
PLH
spaces
E
and
X
, i.e. strongly reduced projective limits of inductive limits of Hilbert spaces, the splitting of each short exact sequence
0
→
X
→
f
G
→
g
E
→
0
of
PLH
spaces, i.e.
g
has a continuous linear right inverse or
f
has a continuous linear left inverse, if
E
is either a Fréchet–Hilbert space or the strong dual of a Fréchet–Hilbert space by Bonet and Domański’s conditions (
T
) and
(
T
ε
)
. Thus we extend the splitting relation for Fréchet–Hilbert spaces due to Domański and Mastyło and the
(
D
N
)
-
(
Ω
)
splitting theorem of Vogt and Wagner. Due to the lack of nuclearity significantly different methods have to be applied. Through the connection to the vanishing of
proj
1
of a spectrum of spaces of operators the above methods are also linked to the parameter dependence problem, albeit under some nuclearity assumptions as we need interpolation. These theoretical results are applied to several non-
PLS
(non-nuclear) spaces, as the space
D
L
2
, its strong dual, Hörmander’s
B
2
,
k
loc
(
Ω
)
spaces and the Köthe
PLH
spaces. |
---|---|
ISSN: | 1578-7303 1579-1505 |
DOI: | 10.1007/s13398-017-0424-5 |