Mean Convergence Theorems and Weak Laws of Large Numbers for Arrays of Measurable Operators under Some Conditions of Uniform Integrability

In this paper, we introduce the notions of uniform integrability in the Cesàro sense, h -integrability with respect to the array of constants { a ni }, and h -integrability with exponent r for an array of measurable operators. Then, we establish some mean convergence theorems and weak laws of large...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lobachevskii journal of mathematics 2019-08, Vol.40 (8), p.1218-1229
Hauptverfasser: Quang, Nguyen Van, Son, Do The, Hu, Tien-Chung, Huan, Nguyen Van
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we introduce the notions of uniform integrability in the Cesàro sense, h -integrability with respect to the array of constants { a ni }, and h -integrability with exponent r for an array of measurable operators. Then, we establish some mean convergence theorems and weak laws of large numbers for arrays of measurable operators under some conditions related to these notions.
ISSN:1995-0802
1818-9962
DOI:10.1134/S1995080219080249