Mean Convergence Theorems and Weak Laws of Large Numbers for Arrays of Measurable Operators under Some Conditions of Uniform Integrability
In this paper, we introduce the notions of uniform integrability in the Cesàro sense, h -integrability with respect to the array of constants { a ni }, and h -integrability with exponent r for an array of measurable operators. Then, we establish some mean convergence theorems and weak laws of large...
Gespeichert in:
Veröffentlicht in: | Lobachevskii journal of mathematics 2019-08, Vol.40 (8), p.1218-1229 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we introduce the notions of uniform integrability in the Cesàro sense,
h
-integrability with respect to the array of constants {
a
ni
}, and
h
-integrability with exponent
r
for an array of measurable operators. Then, we establish some mean convergence theorems and weak laws of large numbers for arrays of measurable operators under some conditions related to these notions. |
---|---|
ISSN: | 1995-0802 1818-9962 |
DOI: | 10.1134/S1995080219080249 |