UNBOUNDED B-FREDHOLM OPERATORS ON HILBERT SPACES

This paper is concerned with the study of a class of closed linear operators densely defined on a Hilbert space $H$ and called B-Fredholm operators. We characterize a B-Fredholm operator as the direct sum of a Fredholm closed operator and a bounded nilpotent operator. The notion of an index of a B-F...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Edinburgh Mathematical Society 2008-06, Vol.51 (2), p.285-296
Hauptverfasser: Berkani, M., Castro-González, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is concerned with the study of a class of closed linear operators densely defined on a Hilbert space $H$ and called B-Fredholm operators. We characterize a B-Fredholm operator as the direct sum of a Fredholm closed operator and a bounded nilpotent operator. The notion of an index of a B-Fredholm operator is introduced and a characterization of B-Fredholm operators with index $0$ is given in terms of the sum of a Drazin closed operator and a finite-rank operator. We analyse the properties of the powers $T^m$ of a closed B-Fredholm operator and we establish a spectral mapping theorem.
ISSN:0013-0915
1464-3839
DOI:10.1017/S0013091505001574