Canards Existence in the Hindmarsh–Rose model

In two previous papers we have proposed a new method for proving the existence of “canard solutions” on one hand for three and four-dimensional singularly perturbed systems with only one fast variable and, on the other hand for four-dimensional singularly perturbed systems with two fast variables [J...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical modelling of natural phenomena 2019, Vol.14 (4), p.409
Hauptverfasser: Ginoux, Jean-Marc, Llibre, Jaume, Tchizawa, Kiyoyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 409
container_title Mathematical modelling of natural phenomena
container_volume 14
creator Ginoux, Jean-Marc
Llibre, Jaume
Tchizawa, Kiyoyuki
description In two previous papers we have proposed a new method for proving the existence of “canard solutions” on one hand for three and four-dimensional singularly perturbed systems with only one fast variable and, on the other hand for four-dimensional singularly perturbed systems with two fast variables [J.M. Ginoux and J. Llibre, Qual. Theory Dyn. Syst. 15 (2016) 381–431; J.M. Ginoux and J. Llibre, Qual. Theory Dyn. Syst. 15 (2015) 342010]. The aim of this work is to extend this method which improves the classical ones used till now to the case of three-dimensional singularly perturbed systems with two fast variables. This method enables to state a unique generic condition for the existence of “canard solutions” for such three-dimensional singularly perturbed systems which is based on the stability of folded singularities (pseudo singular points in this case) of the normalized slow dynamics deduced from a well-known property of linear algebra. Applications of this method to a famous neuronal bursting model enables to show the existence of “canard solutions” in the Hindmarsh-Rose model.
doi_str_mv 10.1051/mmnp/2019012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2283281359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2283281359</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-20e6aa7429068cf4f19a502a69eccde44c7714efc056cedd70bdcb3473d386873</originalsourceid><addsrcrecordid>eNo9kMFKAzEQhoMoWGpvPsCCV9dOMtlkc5TSWqUgSqXHkCZZurW7W5Mt1FvfwTf0SdzS4lz-y8fMPx8htxQeKGR0WFX1dsiAKqDsgvSoFJAKCvSS9EBJTDPk-TUZxLiGbpByBOiR4cjUJriYjPdlbH1tfVLWSbvyybSsXWVCXP0eft6b6JOqcX5zQ64Ks4l-cM4--ZiM56NpOnt9eh49zlKLqNqUgRfGSM4UiNwWvKDKZMCMUN5a5zm3UlLuCwuZsN45CUtnl8glOsxFLrFP7k57t6H52vnY6nWzC3V3UjOWI8spZqqj7k-UDU2MwRd6G8qu9LemoI9W9NGKPlvp8PSEH1_d_7MmfGohUWY6h4Weq8nihb-hBvwDrDBjkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2283281359</pqid></control><display><type>article</type><title>Canards Existence in the Hindmarsh–Rose model</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ginoux, Jean-Marc ; Llibre, Jaume ; Tchizawa, Kiyoyuki</creator><contributor>Lázaro, J. T. ; Mortell, M.P. ; Sobolev, V.A. ; Korobeinikov, A. ; Korobeinikov, A. ; Lázaro, J. T. ; Sobolev, V.A. ; Mortell, M.P.</contributor><creatorcontrib>Ginoux, Jean-Marc ; Llibre, Jaume ; Tchizawa, Kiyoyuki ; Lázaro, J. T. ; Mortell, M.P. ; Sobolev, V.A. ; Korobeinikov, A. ; Korobeinikov, A. ; Lázaro, J. T. ; Sobolev, V.A. ; Mortell, M.P.</creatorcontrib><description>In two previous papers we have proposed a new method for proving the existence of “canard solutions” on one hand for three and four-dimensional singularly perturbed systems with only one fast variable and, on the other hand for four-dimensional singularly perturbed systems with two fast variables [J.M. Ginoux and J. Llibre, Qual. Theory Dyn. Syst. 15 (2016) 381–431; J.M. Ginoux and J. Llibre, Qual. Theory Dyn. Syst. 15 (2015) 342010]. The aim of this work is to extend this method which improves the classical ones used till now to the case of three-dimensional singularly perturbed systems with two fast variables. This method enables to state a unique generic condition for the existence of “canard solutions” for such three-dimensional singularly perturbed systems which is based on the stability of folded singularities (pseudo singular points in this case) of the normalized slow dynamics deduced from a well-known property of linear algebra. Applications of this method to a famous neuronal bursting model enables to show the existence of “canard solutions” in the Hindmarsh-Rose model.</description><identifier>ISSN: 0973-5348</identifier><identifier>EISSN: 1760-6101</identifier><identifier>DOI: 10.1051/mmnp/2019012</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>34C23 ; 34C25 ; 37G10 ; canard solutions ; Dimensional stability ; Hindmarsh–Rose model ; Linear algebra ; Singularity (mathematics) ; singularly perturbed dynamical systems</subject><ispartof>Mathematical modelling of natural phenomena, 2019, Vol.14 (4), p.409</ispartof><rights>2019. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.mmnp-journal.org/articles/mmnp/abs/2019/04/mmnp180162/mmnp180162.html .</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-20e6aa7429068cf4f19a502a69eccde44c7714efc056cedd70bdcb3473d386873</citedby><cites>FETCH-LOGICAL-c339t-20e6aa7429068cf4f19a502a69eccde44c7714efc056cedd70bdcb3473d386873</cites><orcidid>0000-0002-9511-5999</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><contributor>Lázaro, J. T.</contributor><contributor>Mortell, M.P.</contributor><contributor>Sobolev, V.A.</contributor><contributor>Korobeinikov, A.</contributor><contributor>Korobeinikov, A.</contributor><contributor>Lázaro, J. T.</contributor><contributor>Sobolev, V.A.</contributor><contributor>Mortell, M.P.</contributor><creatorcontrib>Ginoux, Jean-Marc</creatorcontrib><creatorcontrib>Llibre, Jaume</creatorcontrib><creatorcontrib>Tchizawa, Kiyoyuki</creatorcontrib><title>Canards Existence in the Hindmarsh–Rose model</title><title>Mathematical modelling of natural phenomena</title><description>In two previous papers we have proposed a new method for proving the existence of “canard solutions” on one hand for three and four-dimensional singularly perturbed systems with only one fast variable and, on the other hand for four-dimensional singularly perturbed systems with two fast variables [J.M. Ginoux and J. Llibre, Qual. Theory Dyn. Syst. 15 (2016) 381–431; J.M. Ginoux and J. Llibre, Qual. Theory Dyn. Syst. 15 (2015) 342010]. The aim of this work is to extend this method which improves the classical ones used till now to the case of three-dimensional singularly perturbed systems with two fast variables. This method enables to state a unique generic condition for the existence of “canard solutions” for such three-dimensional singularly perturbed systems which is based on the stability of folded singularities (pseudo singular points in this case) of the normalized slow dynamics deduced from a well-known property of linear algebra. Applications of this method to a famous neuronal bursting model enables to show the existence of “canard solutions” in the Hindmarsh-Rose model.</description><subject>34C23</subject><subject>34C25</subject><subject>37G10</subject><subject>canard solutions</subject><subject>Dimensional stability</subject><subject>Hindmarsh–Rose model</subject><subject>Linear algebra</subject><subject>Singularity (mathematics)</subject><subject>singularly perturbed dynamical systems</subject><issn>0973-5348</issn><issn>1760-6101</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kMFKAzEQhoMoWGpvPsCCV9dOMtlkc5TSWqUgSqXHkCZZurW7W5Mt1FvfwTf0SdzS4lz-y8fMPx8htxQeKGR0WFX1dsiAKqDsgvSoFJAKCvSS9EBJTDPk-TUZxLiGbpByBOiR4cjUJriYjPdlbH1tfVLWSbvyybSsXWVCXP0eft6b6JOqcX5zQ64Ks4l-cM4--ZiM56NpOnt9eh49zlKLqNqUgRfGSM4UiNwWvKDKZMCMUN5a5zm3UlLuCwuZsN45CUtnl8glOsxFLrFP7k57t6H52vnY6nWzC3V3UjOWI8spZqqj7k-UDU2MwRd6G8qu9LemoI9W9NGKPlvp8PSEH1_d_7MmfGohUWY6h4Weq8nihb-hBvwDrDBjkg</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Ginoux, Jean-Marc</creator><creator>Llibre, Jaume</creator><creator>Tchizawa, Kiyoyuki</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-9511-5999</orcidid></search><sort><creationdate>2019</creationdate><title>Canards Existence in the Hindmarsh–Rose model</title><author>Ginoux, Jean-Marc ; Llibre, Jaume ; Tchizawa, Kiyoyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-20e6aa7429068cf4f19a502a69eccde44c7714efc056cedd70bdcb3473d386873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>34C23</topic><topic>34C25</topic><topic>37G10</topic><topic>canard solutions</topic><topic>Dimensional stability</topic><topic>Hindmarsh–Rose model</topic><topic>Linear algebra</topic><topic>Singularity (mathematics)</topic><topic>singularly perturbed dynamical systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ginoux, Jean-Marc</creatorcontrib><creatorcontrib>Llibre, Jaume</creatorcontrib><creatorcontrib>Tchizawa, Kiyoyuki</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Mathematical modelling of natural phenomena</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ginoux, Jean-Marc</au><au>Llibre, Jaume</au><au>Tchizawa, Kiyoyuki</au><au>Lázaro, J. T.</au><au>Mortell, M.P.</au><au>Sobolev, V.A.</au><au>Korobeinikov, A.</au><au>Korobeinikov, A.</au><au>Lázaro, J. T.</au><au>Sobolev, V.A.</au><au>Mortell, M.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Canards Existence in the Hindmarsh–Rose model</atitle><jtitle>Mathematical modelling of natural phenomena</jtitle><date>2019</date><risdate>2019</risdate><volume>14</volume><issue>4</issue><spage>409</spage><pages>409-</pages><issn>0973-5348</issn><eissn>1760-6101</eissn><abstract>In two previous papers we have proposed a new method for proving the existence of “canard solutions” on one hand for three and four-dimensional singularly perturbed systems with only one fast variable and, on the other hand for four-dimensional singularly perturbed systems with two fast variables [J.M. Ginoux and J. Llibre, Qual. Theory Dyn. Syst. 15 (2016) 381–431; J.M. Ginoux and J. Llibre, Qual. Theory Dyn. Syst. 15 (2015) 342010]. The aim of this work is to extend this method which improves the classical ones used till now to the case of three-dimensional singularly perturbed systems with two fast variables. This method enables to state a unique generic condition for the existence of “canard solutions” for such three-dimensional singularly perturbed systems which is based on the stability of folded singularities (pseudo singular points in this case) of the normalized slow dynamics deduced from a well-known property of linear algebra. Applications of this method to a famous neuronal bursting model enables to show the existence of “canard solutions” in the Hindmarsh-Rose model.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/mmnp/2019012</doi><orcidid>https://orcid.org/0000-0002-9511-5999</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0973-5348
ispartof Mathematical modelling of natural phenomena, 2019, Vol.14 (4), p.409
issn 0973-5348
1760-6101
language eng
recordid cdi_proquest_journals_2283281359
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects 34C23
34C25
37G10
canard solutions
Dimensional stability
Hindmarsh–Rose model
Linear algebra
Singularity (mathematics)
singularly perturbed dynamical systems
title Canards Existence in the Hindmarsh–Rose model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A04%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Canards%20Existence%20in%20the%20Hindmarsh%E2%80%93Rose%20model&rft.jtitle=Mathematical%20modelling%20of%20natural%20phenomena&rft.au=Ginoux,%20Jean-Marc&rft.date=2019&rft.volume=14&rft.issue=4&rft.spage=409&rft.pages=409-&rft.issn=0973-5348&rft.eissn=1760-6101&rft_id=info:doi/10.1051/mmnp/2019012&rft_dat=%3Cproquest_cross%3E2283281359%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2283281359&rft_id=info:pmid/&rfr_iscdi=true