Canards Existence in the Hindmarsh–Rose model
In two previous papers we have proposed a new method for proving the existence of “canard solutions” on one hand for three and four-dimensional singularly perturbed systems with only one fast variable and, on the other hand for four-dimensional singularly perturbed systems with two fast variables [J...
Gespeichert in:
Veröffentlicht in: | Mathematical modelling of natural phenomena 2019, Vol.14 (4), p.409 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In two previous papers we have proposed a new method for proving the existence of “canard solutions” on one hand for three and four-dimensional singularly perturbed systems with only one fast variable and, on the other hand for four-dimensional singularly perturbed systems with two fast variables [J.M. Ginoux and J. Llibre, Qual. Theory Dyn. Syst. 15 (2016) 381–431; J.M. Ginoux and J. Llibre, Qual. Theory Dyn. Syst. 15 (2015) 342010]. The aim of this work is to extend this method which improves the classical ones used till now to the case of three-dimensional singularly perturbed systems with two fast variables. This method enables to state a unique generic condition for the existence of “canard solutions” for such three-dimensional singularly perturbed systems which is based on the stability of folded singularities (pseudo singular points in this case) of the normalized slow dynamics deduced from a well-known property of linear algebra. Applications of this method to a famous neuronal bursting model enables to show the existence of “canard solutions” in the Hindmarsh-Rose model. |
---|---|
ISSN: | 0973-5348 1760-6101 |
DOI: | 10.1051/mmnp/2019012 |