DISTRIBUTION OF GAPS BETWEEN THE INVERSES $\mathrm{mod} q
Let $q$ be a positive integer, let $\mathcal{I}=\mathcal{I}(q)$ and $\mathcal{J}=\mathcal{J}(q)$ be subintervals of integers in $[1,q]$ and let $\mathcal{M}$ be the set of elements of $\mathcal{I}$ that are invertible modulo $q$ and whose inverses lie in $\mathcal{J}$. We show that when $q$ approach...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Edinburgh Mathematical Society 2003-02, Vol.46 (1), p.185-203 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!