DISTRIBUTION OF GAPS BETWEEN THE INVERSES $\mathrm{mod} q

Let $q$ be a positive integer, let $\mathcal{I}=\mathcal{I}(q)$ and $\mathcal{J}=\mathcal{J}(q)$ be subintervals of integers in $[1,q]$ and let $\mathcal{M}$ be the set of elements of $\mathcal{I}$ that are invertible modulo $q$ and whose inverses lie in $\mathcal{J}$. We show that when $q$ approach...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Edinburgh Mathematical Society 2003-02, Vol.46 (1), p.185-203
Hauptverfasser: Cobeli, C., Vâjâitu, M., Zaharescu, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $q$ be a positive integer, let $\mathcal{I}=\mathcal{I}(q)$ and $\mathcal{J}=\mathcal{J}(q)$ be subintervals of integers in $[1,q]$ and let $\mathcal{M}$ be the set of elements of $\mathcal{I}$ that are invertible modulo $q$ and whose inverses lie in $\mathcal{J}$. We show that when $q$ approaches infinity through a sequence of values such that $\varphi(q)/q\rightarrow0$, the $r$-spacing distribution between consecutive elements of $\mathcal{M}$ becomes exponential. AMS 2000 Mathematics subject classification: Primary 11K06; 11B05; 11N69
ISSN:0013-0915
1464-3839
DOI:10.1017/S0013091501000724