DISTRIBUTION OF GAPS BETWEEN THE INVERSES $\mathrm{mod} q
Let $q$ be a positive integer, let $\mathcal{I}=\mathcal{I}(q)$ and $\mathcal{J}=\mathcal{J}(q)$ be subintervals of integers in $[1,q]$ and let $\mathcal{M}$ be the set of elements of $\mathcal{I}$ that are invertible modulo $q$ and whose inverses lie in $\mathcal{J}$. We show that when $q$ approach...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Edinburgh Mathematical Society 2003-02, Vol.46 (1), p.185-203 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 203 |
---|---|
container_issue | 1 |
container_start_page | 185 |
container_title | Proceedings of the Edinburgh Mathematical Society |
container_volume | 46 |
creator | Cobeli, C. Vâjâitu, M. Zaharescu, A. |
description | Let $q$ be a positive integer, let $\mathcal{I}=\mathcal{I}(q)$ and $\mathcal{J}=\mathcal{J}(q)$ be subintervals of integers in $[1,q]$ and let $\mathcal{M}$ be the set of elements of $\mathcal{I}$ that are invertible modulo $q$ and whose inverses lie in $\mathcal{J}$. We show that when $q$ approaches infinity through a sequence of values such that $\varphi(q)/q\rightarrow0$, the $r$-spacing distribution between consecutive elements of $\mathcal{M}$ becomes exponential. AMS 2000 Mathematics subject classification: Primary 11K06; 11B05; 11N69 |
doi_str_mv | 10.1017/S0013091501000724 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_228326784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0013091501000724</cupid><sourcerecordid>1401847281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3084-a210f0d01335a27f535fb93658460bae252cd4e45e534fa59ea0d2c440ac572b3</originalsourceid><addsrcrecordid>eNp1kE1PwkAQhjdGExH9Ad4a47U6-9Vtj3yUUkNAaMGLyWbbbhW0FraQaIz_3TYQPRhPc5jnnWfyInSJ4QYDFrcRAKbgYQ4YAARhR6iFmcNs6lLvGLWatd3sT9FZVa0aRnDcQl4_jOJZ2J3H4WRsTQZW0LmPrK4fP_j-2IqHvhWOF_4s8iPr-rFQ22dTfBZl9mVtztFJrl4rfXGYbTQf-HFvaI8mQdjrjOyUgstsRTDkkNV6yhUROac8TzzqcJc5kChNOEkzphnXnLJccU8ryEjKGKiUC5LQNrra312bcrPT1Vauyp15q5WSEJcSR7ishvAeSk1ZVUbncm2WhTIfEoNsCpJ_Cqoz9j6zrLb6_SegzIt0BBVcOsFU9u4W_TiYxnJa8_TgUEViltmT_v3kf8s3xYpwpw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>228326784</pqid></control><display><type>article</type><title>DISTRIBUTION OF GAPS BETWEEN THE INVERSES $\mathrm{mod} q</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Cambridge University Press Journals Complete</source><creator>Cobeli, C. ; Vâjâitu, M. ; Zaharescu, A.</creator><creatorcontrib>Cobeli, C. ; Vâjâitu, M. ; Zaharescu, A.</creatorcontrib><description>Let $q$ be a positive integer, let $\mathcal{I}=\mathcal{I}(q)$ and $\mathcal{J}=\mathcal{J}(q)$ be subintervals of integers in $[1,q]$ and let $\mathcal{M}$ be the set of elements of $\mathcal{I}$ that are invertible modulo $q$ and whose inverses lie in $\mathcal{J}$. We show that when $q$ approaches infinity through a sequence of values such that $\varphi(q)/q\rightarrow0$, the $r$-spacing distribution between consecutive elements of $\mathcal{M}$ becomes exponential. AMS 2000 Mathematics subject classification: Primary 11K06; 11B05; 11N69</description><identifier>ISSN: 0013-0915</identifier><identifier>EISSN: 1464-3839</identifier><identifier>DOI: 10.1017/S0013091501000724</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>exponential sums ; inverses ; Poissonian distribution</subject><ispartof>Proceedings of the Edinburgh Mathematical Society, 2003-02, Vol.46 (1), p.185-203</ispartof><rights>Copyright © Edinburgh Mathematical Society 2003</rights><rights>2003 Edinburgh Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3084-a210f0d01335a27f535fb93658460bae252cd4e45e534fa59ea0d2c440ac572b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0013091501000724/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,777,781,27905,27906,55609</link.rule.ids></links><search><creatorcontrib>Cobeli, C.</creatorcontrib><creatorcontrib>Vâjâitu, M.</creatorcontrib><creatorcontrib>Zaharescu, A.</creatorcontrib><title>DISTRIBUTION OF GAPS BETWEEN THE INVERSES $\mathrm{mod} q</title><title>Proceedings of the Edinburgh Mathematical Society</title><addtitle>Proceedings of the Edinburgh Mathematical Society</addtitle><description>Let $q$ be a positive integer, let $\mathcal{I}=\mathcal{I}(q)$ and $\mathcal{J}=\mathcal{J}(q)$ be subintervals of integers in $[1,q]$ and let $\mathcal{M}$ be the set of elements of $\mathcal{I}$ that are invertible modulo $q$ and whose inverses lie in $\mathcal{J}$. We show that when $q$ approaches infinity through a sequence of values such that $\varphi(q)/q\rightarrow0$, the $r$-spacing distribution between consecutive elements of $\mathcal{M}$ becomes exponential. AMS 2000 Mathematics subject classification: Primary 11K06; 11B05; 11N69</description><subject>exponential sums</subject><subject>inverses</subject><subject>Poissonian distribution</subject><issn>0013-0915</issn><issn>1464-3839</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1PwkAQhjdGExH9Ad4a47U6-9Vtj3yUUkNAaMGLyWbbbhW0FraQaIz_3TYQPRhPc5jnnWfyInSJ4QYDFrcRAKbgYQ4YAARhR6iFmcNs6lLvGLWatd3sT9FZVa0aRnDcQl4_jOJZ2J3H4WRsTQZW0LmPrK4fP_j-2IqHvhWOF_4s8iPr-rFQ22dTfBZl9mVtztFJrl4rfXGYbTQf-HFvaI8mQdjrjOyUgstsRTDkkNV6yhUROac8TzzqcJc5kChNOEkzphnXnLJccU8ryEjKGKiUC5LQNrra312bcrPT1Vauyp15q5WSEJcSR7ishvAeSk1ZVUbncm2WhTIfEoNsCpJ_Cqoz9j6zrLb6_SegzIt0BBVcOsFU9u4W_TiYxnJa8_TgUEViltmT_v3kf8s3xYpwpw</recordid><startdate>20030201</startdate><enddate>20030201</enddate><creator>Cobeli, C.</creator><creator>Vâjâitu, M.</creator><creator>Zaharescu, A.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20030201</creationdate><title>DISTRIBUTION OF GAPS BETWEEN THE INVERSES $\mathrm{mod} q</title><author>Cobeli, C. ; Vâjâitu, M. ; Zaharescu, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3084-a210f0d01335a27f535fb93658460bae252cd4e45e534fa59ea0d2c440ac572b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>exponential sums</topic><topic>inverses</topic><topic>Poissonian distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cobeli, C.</creatorcontrib><creatorcontrib>Vâjâitu, M.</creatorcontrib><creatorcontrib>Zaharescu, A.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Proceedings of the Edinburgh Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cobeli, C.</au><au>Vâjâitu, M.</au><au>Zaharescu, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DISTRIBUTION OF GAPS BETWEEN THE INVERSES $\mathrm{mod} q</atitle><jtitle>Proceedings of the Edinburgh Mathematical Society</jtitle><addtitle>Proceedings of the Edinburgh Mathematical Society</addtitle><date>2003-02-01</date><risdate>2003</risdate><volume>46</volume><issue>1</issue><spage>185</spage><epage>203</epage><pages>185-203</pages><issn>0013-0915</issn><eissn>1464-3839</eissn><abstract>Let $q$ be a positive integer, let $\mathcal{I}=\mathcal{I}(q)$ and $\mathcal{J}=\mathcal{J}(q)$ be subintervals of integers in $[1,q]$ and let $\mathcal{M}$ be the set of elements of $\mathcal{I}$ that are invertible modulo $q$ and whose inverses lie in $\mathcal{J}$. We show that when $q$ approaches infinity through a sequence of values such that $\varphi(q)/q\rightarrow0$, the $r$-spacing distribution between consecutive elements of $\mathcal{M}$ becomes exponential. AMS 2000 Mathematics subject classification: Primary 11K06; 11B05; 11N69</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0013091501000724</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-0915 |
ispartof | Proceedings of the Edinburgh Mathematical Society, 2003-02, Vol.46 (1), p.185-203 |
issn | 0013-0915 1464-3839 |
language | eng |
recordid | cdi_proquest_journals_228326784 |
source | EZB-FREE-00999 freely available EZB journals; Cambridge University Press Journals Complete |
subjects | exponential sums inverses Poissonian distribution |
title | DISTRIBUTION OF GAPS BETWEEN THE INVERSES $\mathrm{mod} q |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A06%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DISTRIBUTION%20OF%20GAPS%20BETWEEN%20THE%20INVERSES%20$%5Cmathrm%7Bmod%7D%20q&rft.jtitle=Proceedings%20of%20the%20Edinburgh%20Mathematical%20Society&rft.au=Cobeli,%20C.&rft.date=2003-02-01&rft.volume=46&rft.issue=1&rft.spage=185&rft.epage=203&rft.pages=185-203&rft.issn=0013-0915&rft.eissn=1464-3839&rft_id=info:doi/10.1017/S0013091501000724&rft_dat=%3Cproquest_cross%3E1401847281%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=228326784&rft_id=info:pmid/&rft_cupid=10_1017_S0013091501000724&rfr_iscdi=true |