INVARIANT SUBSPACES AND HANKEL-TYPE OPERATORS ON A BERGMAN SPACE

Let $L^{2}=L^{2}(D,rdrd\theta/\pi)$ be the Lebesgue space on the open unit disc $D$ and let $L_{a}^2=L^{2}\cap\mathrm{Hol}(D)$ be a Bergman space on $D$. In this paper, we are interested in a closed subspace $\mathcal{M}$ of $L^{2}$ which is invariant under the multiplication by the coordinate funct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Edinburgh Mathematical Society 2005-06, Vol.48 (2), p.479-484
Hauptverfasser: Nakazi, Takahiko, Osawa, Tomoko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $L^{2}=L^{2}(D,rdrd\theta/\pi)$ be the Lebesgue space on the open unit disc $D$ and let $L_{a}^2=L^{2}\cap\mathrm{Hol}(D)$ be a Bergman space on $D$. In this paper, we are interested in a closed subspace $\mathcal{M}$ of $L^{2}$ which is invariant under the multiplication by the coordinate function $z$, and a Hankel-type operator from $L_{a}^2$ to $\mathcal{M}^\bot$. In particular, we study an invariant subspace $\mathcal{M}$ such that there does not exist a finite-rank Hankel-type operator except a zero operator.
ISSN:0013-0915
1464-3839
DOI:10.1017/S001309150400032X