INVARIANT SUBSPACES AND HANKEL-TYPE OPERATORS ON A BERGMAN SPACE
Let $L^{2}=L^{2}(D,rdrd\theta/\pi)$ be the Lebesgue space on the open unit disc $D$ and let $L_{a}^2=L^{2}\cap\mathrm{Hol}(D)$ be a Bergman space on $D$. In this paper, we are interested in a closed subspace $\mathcal{M}$ of $L^{2}$ which is invariant under the multiplication by the coordinate funct...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Edinburgh Mathematical Society 2005-06, Vol.48 (2), p.479-484 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $L^{2}=L^{2}(D,rdrd\theta/\pi)$ be the Lebesgue space on the open unit disc $D$ and let $L_{a}^2=L^{2}\cap\mathrm{Hol}(D)$ be a Bergman space on $D$. In this paper, we are interested in a closed subspace $\mathcal{M}$ of $L^{2}$ which is invariant under the multiplication by the coordinate function $z$, and a Hankel-type operator from $L_{a}^2$ to $\mathcal{M}^\bot$. In particular, we study an invariant subspace $\mathcal{M}$ such that there does not exist a finite-rank Hankel-type operator except a zero operator. |
---|---|
ISSN: | 0013-0915 1464-3839 |
DOI: | 10.1017/S001309150400032X |