Magneto-electro-elastic vibration of moderately thick FG annular plates subjected to multi physical loads in thermal environment using GDQ method by considering neutral surface

The vibration analysis of an annular plate made up of functionally graded magneto-electro-elastic materials subjected to multi physical loads is presented. The plate is in thermal environment and temperature is distributed non-uniformly in its thickness direction. In addition, the plate is assumed m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications Journal of materials, design and applications, 2019-10, Vol.233 (10), p.2140-2159
Hauptverfasser: Arshid, Ehsan, Kiani, Ali, Amir, Saeed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The vibration analysis of an annular plate made up of functionally graded magneto-electro-elastic materials subjected to multi physical loads is presented. The plate is in thermal environment and temperature is distributed non-uniformly in its thickness direction. In addition, the plate is assumed moderately thick, the material properties vary through the thickness, and the exact neutral surface position is determined and took into account. According to Hamilton’s principle and the first-order shear deformation theory, the governing motion equations are extracted. Numerical results for various boundary conditions are obtained via the generalized differential quadrature method and are validated in simpler states with those of the literature. The effects of different parameters such as material property gradient index, multi physical loads, temperature variations, boundary conditions and geometric specifications of the plate on the natural frequencies and mode shapes are investigated. Temperature changes have little effect on the natural frequencies and the effect of electric potential on them is opposite of magnetic one. In other words, by increasing the magnetic potential, the rigidity of the plate increases too, and the frequency increases. The results of this study are useful to design more efficient sensors and actuators used in the smart or intelligent structures.
ISSN:1464-4207
2041-3076
DOI:10.1177/1464420719832626